• ベストアンサー

ツォルンの補題:

ツォルンの補題:帰納的順序集合に極大元がある。 各所で使われますが、意味するもののイメージがわきません。証明はいらないがわかりやすいよう、なるほど成り立つというのが納得いくよう、意味するイメージをわかりやすく説明してほしい。

  • taktta
  • お礼率72% (1031/1430)

質問者が選んだベストアンサー

  • ベストアンサー
  • adinat
  • ベストアンサー率64% (269/414)
回答No.1

こんなのなるほど成り立つなんて思わない方がいい。形式上は自明に見えるのに、とても危険なことをやっているからです。選択公理と同等なのだから、それは当たり前。ただ選択公理や整列可能定理の気持ち悪さより、ツォルンの補題の方がまだ自然さがあるから、ということにもなっているので、そのことを問うているのでしょうか。 むしろイメージよりもこれはその有用さを体感したほうがいいと思う。たとえば、「任意のベクトル空間には基底が存在する」、あるいは「任意のヒルベルト空間には完全正規直交系が存在する」、あるいは「任意の体には代数閉包が存在する」、あるいは関数解析で大変重要な「バナッハ空間の任意の閉部分空間上で定義された有界線形汎関数はノルムを変えずに全体の上で定義された有界線形汎関数に拡張される」、あるいは、「任意の環は極大イデアルを持つ」などなど。 僕の直感的なイメージをいうと、枝分かれした(枝は上に伸びていき、二つに分かれたり、あるところで合流したりする)木を書いて、どの一本をとっても(つまり下から順にたどっていく、もちろん枝分かれのところでは好きな方を選ぶ)好きなところで終わったら、その終わったところと同じか、あるいはそれより上に必ず一つは点がある、ということです。よく高校で不連続グラフを書くときに○(含まない)と●(含む)を使いますが、枝のいちばんてっぺんの部分がすべて●になっている、というのが帰納的(半)順序集合の(僕の)直感的イメージです。したがってその●たちはすべて極大元になっているということです。たとえば枝が一本だけのまっすぐな真上に伸びる木があるとして(実数直線を上下に伸ばす)と、これはいちばん上が∞で○になってます。だからこれは極大元を持たないのです。あるとすれば∞のはずだけど、それは○だからダメ。帰納的(=任意の全順序部分集合が上限を持つ)というのは枝のてっぺんが●ということを言っているのです、しかし、こういうことは人に教えてもらうよりも、実際、証明を追ったり(ツォルンの補題の証明自体は僕は重要とは思っていないので、一度ぐらい流し読みする程度でいいと思いますが)、実際に適用してみたりしてなんとなくニュアンスを体得されるのがいちばんとは思いますけどね。 もう一度コメントしておきますが、これは決して自明なものではなく、選択公理なしには出てきません。したがって、“成り立つと納得する”ものではなくて、“成り立つことにする”ものなのです。もちろん有限集合などでは自明ですが、無限集合になるとこれは通常の集合論の公理から導くことができるものではないのです。

taktta
質問者

お礼

よく考えてみます。 あなたのおっしゃることのイメージ図は志賀先生の集合論30講にでていたのでそれをよんでみるつもりです。ていねいな解説ありがとうございました。

関連するQ&A

  • Zornの補題について

    Zornの補題を用いて、すべての線形空間V(≠{0})にも基底が存在する事を証明するにはどうすれば良いのでしょうか? わかる方いましたら解答を教えて頂けると助かります。<(_ _)> Zornの補題:帰納的順序集合Xには極大元が存在する

  • 集合の問題です。至急お願いします!

    集合と位相の問題なのですが、Zornの補題の章で帰納的順序集合には極大限があると書いてあったのですがなぜそうなるのでしょうか? 帰納的順序集合には極大限があるという事を証明していただけるでしょうか? よろしくお願い!!

  • Zornの補題の意味は何?

    Zornの補題の意味についての質問ですが、Zornの補題:順序集合Aの任意の全順序部分集合が有界ならぼ、Aは極大元を持つ、というのが、数学の教科書に載ってますが、意味がさっぱり分かりません。その理由を言えば、例えば、実数の区間Aとして、実数体Rの部分集合である、全順序集合{x|x is a real number, 0<x<2}をとれば、Aの任意の全順序部分集合は有界なので、Zornの補題より、Aには極大元(よって、この場合、最大値)が有る事になりますが、あきらかに、Aには極大元(最大値)はありません。私の考えではこのような矛盾が出てきてしまうので、Zornの補題の意味がわかりません。何か、その意味を勘違いしてるのでしょうか?教えてください。

  • 順序集合などに詳しい方の回答お待ちしています。かなり困ってます・・・。

    (A_α)_α∈Λ(ラムダ)を、整列集合Λを添数集合とする集合族として、各A_αはe_αを最小元とする整列集合とする。 直積Π_[α∈Λ]A_αの元a=(a_α)_α∈Λで、Λの高々有限個の元αを除けばa_α=e_αであるようなものを考え、そのようなa全体の作るΠ_[α∈Λ]A_αの部分集合をAとする。 Aの相異なる2元a=(a_α)、a'=(a'_α)をとる。 a_α≠a'_αとなるαは有限個しか存在しないから、 β=max{α∈Λ|a_α≠a'_α}が存在する。 このとき、 a_β<a'_βならばa<a' a_β>a'_βならばa>a' のように、写像a、a'の間に順序を定義する。 このようにしてAに順序を導入する。 [問]この順序についてAは整列集合となることを証明せよ。 (証) 次の補題を利用する。 [補題] 順序集合Aの元の列(a_n)_n∈Nで、a_1>a_2>a_3>・・・>a_n>・・・となるものをAにおける降鎖という。Aが全順序集合の場合、Aが整列集合⇔Aにおける降鎖は存在しない。 さて、Aに導入した順序について、Aが全順序集合となることは容易に示される。よって、上の補題により、A=ΠA_αに降鎖が存在しないことを示せばよい。 仮に、Aに降鎖a^(1)>a^(2)>・・・>a^(n)>・・・が存在すると仮定し、 a^(n)=(a^(n)_α)_α∈Λ max{α|a^(n)_α≠e_α}=α_nとおく。 するとα_1≧α_2≧・・・≧α_n≧・・・である。 (実際、たとえばα_1<α_2とするとmax{α|a^(2)_α≠e_α}=α_2で、 α_1より大きなαに対してはa^(1)_α=e_αであるから a^(1)_(α_2)=e_(α_2)<a^(2)_(α_2)つまりa^(1)<a^(2)となり矛盾。したがってα_1≧α_2となること等により。) しかし、{α_n|n∈N}は整列集合Λの部分集合なので整列集合であるから、補題より(α_n)は降鎖でない。したがってあるn0∈Nが存在して α_n0=α_(n0+1)=・・・=α_(n0+n)=・・・となる。 この元をα~とおく。 すると、Aでの降鎖の存在の仮定より、 a^(n0)>a^(n0+1)>・・・>a^(n0+n)>・・・ であったが、これはAでの順序の定義より、 a^(n0)_α~>a^(n0+1)_α~>・・・>a^(n0+n)_α~>・・・ である。・・・(☆) しかるにこれは整列集合A_α~における降鎖が存在することとなって (補題より)A_α~が整列集合であることに矛盾。 したがってAには降鎖は存在しない。つまり、Aは整列集合である(終) のような証明が[集合位相入門/松坂和夫]という本に書かれていました。(☆)より前は理解できるのですが、(☆)の部分だけどうしてもわかりません。 >これはAでの順序の定義より、 >a^(n0)_α~>a^(n0+1)_α~>・・・>a^(n0+n)_α~>・・・ >である。 ということは、Aでの定義から、証明中で定めたα~が この質問文の冒頭で述べたβとなっているってことですか? だとしてもなぜだかわかりません・・・。 本当にいくら考えてもまったくわからず困っています。 どなたか、わかる方がいらっしゃったら 回答よろしくお願いしますm(_ _)m ※記号がたくさんあって見にくいと思います。 もし、おなじテキストを持っていたら、そちら(p125)を見て貰えると助かりますが・・・。あと、証明はところどころテキストには書かれていない文章を自分で補っている箇所もあります。

  • 順序集合

    自然数の順序集合(N,|)について A={1,2,3,4,5,6,7,8,9,10}に対し,n|m⇔∃k[m=nk](nはmの約数)の順序関係のもとでAの最大元,最小元,極大元,極小元,上限,下限を求めよ(存在しない場合は「存在しない」と解答) 最大元:存在しない,最小元:1,極大元:6,7,8,9,10,極小元:1,上限:2520,下限:1・・・参考書をいろいろ読んで考えたのですが、最大元~下限の各語句の意味があまり理解できず答えに自信がないので、なぜそれが答えなのかと聞かれた場合きちんと説明ができません。どなたか詳しく説明してもらえないでしょうか

  • すべてのヒルベルト空間Hは、正規直交基をもつ?

    前回の質問と同じなのですが、 投稿文が長くなるので、再度書きました ある参考書に書いてあったのですが、 〔定理〕 すべてのヒルベルト空間Hは、正規直交基をもつ 《証明》 Vで正規直交系Eを考える 包含によってEを考える;(つまり、S_1⊂S_2ならば、S_1<S_2と言う) <のこの定義で、Eは半順序である;vがVの元であるから、空でない そして、集合がv/∥v∥だけから成り、正規直交系です いま、{S_α}_α∈A をEの線形順序部分集合であるとする。 それから、∪_α∈A S_α は、正規直交系です; それぞれのS_αを含んで、{S_α}_α∈Aのための上界である Eの線形順序部分集合が上界を持つことから、ツォルンの補題を用いて、 Eには極大元があると結論することができる。; つまり正規直交系は、他のもので真に正規直交系を含まない よく分からないところがあります 2行目 包含によって・・・    証明済み 4行目 v/∥v∥だけから成り  この部分がよく分かりません 5~7行目 ??? 8~10行目 8割以上理解済み 現在このような感じです。 どなたか力を貸してくれると幸いです。 つたない文章ですが、よろしくおねがいします。

  • 部分集合について

    n個の元からなる集合の部分集合は全部で2^n個と聞きましたが、証明はできるのでしょうか?数学的帰納法を使うのでしょうか?

  • 順序集合について…

    Aが全順序集合ならば、Aの最大元と極大元の最小元と極小元の概念は一致することを示せ。 という問題なのですが、 つまり最大元(最小元)⇒極大元(極小元)これは、定義より当たり前なので 極大元(極小元)⇒最大元(最小元)これを示せばいんですよね。 ここが問題で、私にはこの最大元(最小元)と極大元(極小元)の違いがよく分かりません。詳しく教えてくれませんか?

  • 実数の整列化について

     大学で数学を学んでいる者です。最近、集合と位相の科目で、整列可能定理を学びました。それは、選択公理・Zornの補題と同値な命題であって、その内容は 「任意の集合において、適当な順序関係を定義すれば、整列集合にすることができる。(整列集合とは、空でない部分集合が常に最小元を持つ集合)」 という内容でした。  さて、実数の集合は通常の順序関係では整列集合ではありません(例えば開区間は最小数を持ちません)。定理によれば、適当な順序によって実数の集合も整列集合になる訳です。  それなら、それは具体的にはどのような順序なのかと調べて見たんですけど、どうも見つかりません。どなたか知っている人がいれば教えてください。

  • 数学的帰納法では証明できないが超限帰納法でなら証明出来るような簡単な例題ってありますでしょうか

    整列集合Wの元に関するある命題Pが有って,それについて次の(*)が示されたとすれば,PはWの全ての元についても成立つ。 (*) aをWの任意の元とする時,x<aであるWの各元xについてPが成立つと仮定すればPはaについても成立つ。 というのが数学的帰納法の一般化であって,超限帰納法と呼ばれる。 というのをある書物で見かけたのですが超限帰納法は数学的帰納法の一般化ならば数学的帰納法では証明できないが超限帰納法でなら証明出来るような簡単な例題ってありますでしょうか? 是非,ご紹介ください。