• ベストアンサー
  • すぐに回答を!

量子力学、熱力学の参考書について・・・

 量子力学または、熱力学の参考書でお勧めの物ありますか?大学院の受験の参考書として探しています。特に量子力学の参考書のお勧めを教えて頂ければ本当にありがたいです。それぞれ1冊程持っているのですが、以下に関する記述が少ない(特に量子力学)ので困ってます。  キーワードの羅列で申し訳ないのですが、    量子力学では、ハミルトン演算子、フェルミ準位、フェルミ分布関数、フェルミ気体、ハミルトニアン、ヘルムホルツ自由エネルギ、ボルツマン定数、1次元調和振動子、1次元井戸方ポテンシャルに関して...  熱力学では、サイクル系、ファンデルワールス状態式に関して... 問題集でも参考章でもいいのでよろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数528
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#21219
noname#21219

フェルミ準位、フェルミ分布関数、フェルミ気体、ハミルトニアン、ヘルムホルツ自由エネルギ、ボルツマン定数、1次元調和振動子、1次元井戸方ポテンシャル などは、量子力学というより統計力学の領域です。 統計力学の中の、量子統計のジャンルになります。 岩波書店:長岡洋介著『統計力学』がお勧めです。 演習書はサイエンス社の『演習・熱統計力学』など 量子力学の調和振動子や、井戸型ポテンシャルは 境界条件等により統計力学のものより難しくなっています。それをやるならば量子力学の参考書です 岩波書店:原康夫著『量子力学』、 裳華房:江沢洋著『量子力学1』等がお勧めです 熱力学は、サイクル系、ファンデルワールス状態式などは大抵の教科書にはあります。ですから、特に これがいいといったものはありません。どれでも いいと思います。熱力学はボリュームが少ないので、 概念が完全に理解できるようになるまで、色々なものを 読み漁るというのもひとつの手です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とても参考になりました!ありがとうございます!!書名や出版社まで詳しく教えて頂いて本当に助かりました。早速書店へ行って見てきます。本当にありがとうございました!!

関連するQ&A

  • ハミルトン力学、ラグランジュ力学の使い方に関して

    量子力学では、ハミルトニアンが出てくるから分かる通り、 ハミルトン力学が主要になります。 そして場の量子論では、ラグランジアン密度がよく出てくることから分かる通り ラグランジュ力学が主要になります。 しかしながら、高校の物理で習うような古典力学では、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかは、決まりがないように思います。 では、未知の問題が与えられたときに、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかはどうやって選べば良いのでしょうか?計算のしやすさで選べば良いとは思うのですが、どうやればそれが分かるのでしょうか? それと、量子力学では、ハミルトン力学、場の量子論では、ラグランジュ力学が重要になるのはなぜなのでしょうか? 量子力学でラグランジュ力学、場の量子論でハミルトン力学があまり使われないのはどういう理由によるものなのでしょうか?

  • 量子力学の初歩的な問題です

    量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか

  • 量子力学

    はじめまして、KKCBです。 量子力学の質問なのですが、よろしかったら協力していただけるとありがたいです。 ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ □□□□□□□□□□□□ □□□□□□□□□□□□ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■■■■■□□■■■■■ ■:ポテンシャル=無限大 □:ポテンシャル=0 2次元平面上に上の図のような十字型のポテンシャルがひろがっており、この中に電子を閉じこめます。(”道”にあたる部分は無限に伸びています) すると電子は”交差点”部分に局在するらしいのですが、これをシュレディンガー方程式を使って(直感的に)説明したいのです。 どなたか解説していただけたらすごく助かります。 すみませんがよろしくお願いします。

  • 量子力学の問題

    量子力学の問題 次の問題に答えられません。 解等を教えていただけるとうれしいです。 --- ハミルトニアンが2行2列の行列(1)式で与えられている。 ただしωとθは定数である。以下の問いに答えよ。 (1)Hの固有値E+,E-と、それぞれの固有値に対応する規格化された固有ベクトルψ+、ψ-を求めよ。 (2)シュレティンガー方程式を満たす、時刻tにおける状態ベクトルψ(t)をE+、E-とψ+、ψ-を用いてあらわせ。さらに、初期状態を(2)式として、ψ(t)をωとθであらわせ。 (3)上記(2)の量子状態に対して時刻tにおいて測定を行い、(3)を得る確率を求めよ。 (4)このハミルトニアンは、磁気モーメントμを持つ1/2スピンの粒子が、磁束密度Bにおかれた場合の量子力学を記述する。θの幾何学的な意味を述べて、ハミルトニアン(1)のパラメータωをμとBで表せ。参考としてパウリ行列は(4)である。

  • 量子力学の不確定性について(調和振動子)

    量子力学の調和振動子についての質問です。 多くの教科書に書かれていると思いますが、1次元調和振動の不確定性関係は、 <(Δx)^2><(Δp)^2>=(n+1/2)^2 h^2 (※ hと書いていますがエイチバーのことです) で与えられます。(JJサクライ 現代の量子力学 上 p127) これは、エネルギーを増すにつれて不確定性が大きくなっていくということですよね? このことは物理的に考えたとき、一体なにを意味しているのですか? 現実の世界では n が非常に大きいので、不確定性も大きいということでしょうか? また、調和振動子に限らずどんな場合でもエネルギーが増せば不確定性が増加するということは言えますか?

  • 量子力学

    量子力学の問題です。 V=-V0 (x>-L/2) V=0 (x<-L/2) という一次元階段型ポテンシャルを考える。 このとき、接続点(x=-L/2)の左右での、確率密度の流れを検討せよという問題です。 左右で、確率密度の流れは、同じだと私は考えていますが、それを計算で確認しています。 ですが、接続条件を用いて、解きましたが、定数がうまく定まりません。 よろしくお願いします。

  • 量子力学の問題

    一次元ポテンシャル(x<0およびx>LでV(x)=∞、0≦x≦LでV(x)=0)において、φ(x)=Asinkxのとき、x=0,x=Lでの境界条件は、φ(0)=φ(L)=0となる。 この境界条件からkを求めるには何をすればいいのですか?量子力学をはじめたばかりなので丁寧に教えていただければありがたいです。

  • 量子力学と重力について

    等価原理によれば、重力場中の質点の配位空間の軌道は質点の質量には依らないとされています。しかし量子力学では軌道が質量に依存してしまうように思われます。質量Mの質点が作る重力場の中を質量mの質点が運動するとします。(M≫m)。このときボーア半径に相当するものを求めると、  a = h^2/me^2 (ただしhはhバーを表す) の中でe^2をGMmで置き換えれば良いはずだから  a = h^2/GMm^2 となって半径がmに依存してしまいます。そこで教えていただきたいのですが、 (1)現在、重力相互作用も取り入れた統一理論として超弦理論が作られています。超弦理論では上のような等価原理と量子力学の矛盾はどのように説明されるのでしょうか。 (2)素粒子に作用する地球の重力は非常に微弱で測定するのは困難です。しかし中性子干渉計を用いてそのような測定がなされています。その場合、量子力学の計算はハミルトニアンのポテンシャルを重力ポテンシャルとして計算すれば良いのでしょうか。もしそうだとすると上のように等価原理が破れていることになってしまわないのでしょうか。

  • 統計力学と熱力学のちがいは?

    統計力学と熱力学って どんな本を開いても(多少の違いはあれど)同じようなことが書かれていますが 何がちがうんでしょう? 中には「統計熱力学」としてまとめているものも多いです ついでに、お勧めの統計熱力学の本などございましたら 紹介してください 購入の際の参考にさせていただきます

  • 量子力学の質問です。

    【1】 MKS単位系での以下の単位を教えてください。 1. 三次元デルタ関数系ポテンシャル -Vδ(x) δ(y) δ(z) 2. 基底状態における交換子の期待値 <0|[a†, a]|0> 【2】 一次元調和振動子でハミルトニアンH=p^2/2m + mω^2x^2/2 で与えられてる時、固有状態を|n>として、期待値 <n|x|n>を求める方法はシュレディンガー方程式を解いて、エルミートを含む一般解を導出して、∫dxΦxΦ ってやる他に簡単なやり方はないのでしょうか? <x>ならば0であると計算しなくても分かるのですが、より一般的に例えば<x^4>とかを求めるとなるとどうすればいいのでしょうか? よろしくお願いします。