• ベストアンサー
  • 暇なときにでも

ベクトル

△ABCの外心O、OA=a,OB=b,OC=cとし、OH=a+b+cとする。 このとき、点Hは△ABCの垂心であることを証明する問題で、どのように証明をすればいいのかわかりません。 図で書くと 三角形の 3 つの頂点からそれぞれの対辺に引いた垂線は 1 点で交わる。この点のことを垂心 AH=OH-OA=c+b BH=OH-OB=a+c CH=OH-OC=b+c AH⊥BC, BH⊥CA ,CH⊥AB まで考えたのですがその後がわかりません。 ・どうして|a|=|b|=|c|なのですか? ・AH*BC、BH*CA,CH*ABを求めるのですか? ・△は∠A=90゜なのですか?

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数481
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • kony0
  • ベストアンサー率36% (175/474)

仮定と結論をきちっと区別しましょう。 (仮定) Oは△ABCの外心 OA=a,OB=b,OC=c(それぞれベクトル)としたとき、OH=a+b+c (結論) 点Hは△ABCの垂心 結論をいうためには、 AH⊥BC, BH⊥CA ,CH⊥ABがいえればよい。 ☆ポイント☆ ベクトルで垂直を示すには、内積=0を示せ!(かなり基本ですが) ということで、結論をいうためには AH・BC=0, BH・CA=0 ,CH・AB=0がいえればよい。 ・・・という解法の組み立てを行ったところで、 (これが2つめの質問の回答です) AH=OH-OA=b+c(これはOH=a+b+cという仮定を適用) BC=OC-OA=b-c AH・BC = ・・・(以下略) > ・どうして|a|=|b|=|c|なのですか? 仮定より、Oが△ABCの外心だからです。 > ・△は∠A=90゜なのですか? どこにもそんなことは書いてないですが・・・?

共感・感謝の気持ちを伝えよう!

その他の回答 (3)

  • 回答No.3

> AH⊥BC, BH⊥CA ,CH⊥AB が判っているのなら、直行する2つのベクトルがどのような関係を持っていたのか、確認してみましょう。 または、直行する2つの直線の関係でも良い。 > ・AH*BC、BH*CA,CH*ABを求めるのですか? 三角形の面積から、証明できる場合もあるということです。 【三角形と三角比】について復習してみましょう。 > ・△は∠A=90゜なのですか? 実際に作図して確かめてください。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
noname#21219
noname#21219

a,b,cはベクトルでしたか、失礼しました。AH⊥BC, BH⊥CA ,CH⊥ABは、実際に計算すれば(内積をとれば) すぐに確かめられます。 AH・BC=(OH-OA)・(OC-OB)=(b+c)・(c-b)=0など。 これが確かめられれば、Hは垂心だと証明された といっていいと思います。垂心は一つしか存在しないので AH,BH,CHがそれぞれの対辺のベクトルと直角ならば、 点Hは垂心というほかないでしょう。∠A=90°ということ はないと思います。一般のΔについて成り立つのでしょう。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#21219
noname#21219

まず、AH=OH-OA=c+b BH=OH-OB=a+c CH=OH-OC=b+c とありますが、この関係式は最右辺だけは成り立ちません 。というのは、AHとかOHとかいうのは、全てベクトル だからです。a,b,cはただの辺の『長さ』であり これはスカラーなので、ベクトルの計算にそのまま 使うことはできないのです。 |a|=|b|=|c|という関係は、点OがΔABCの外接円の中心 なので当然成り立ちます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 迷惑をおかけしてすいません。 これからはあまり質問をしないように努力をしたいと思います。

関連するQ&A

  • ベクトルの垂心の証明

    三角形ABCの外心をO,OHベクトル=OAベクトル+OBベクトル+OCベクトルとするとき、点Hは三角形ABCの垂心であることを示せ。 解答ではAHベクトル・BCベクトル=0     BHベクトル・CAベクトル=0     CHベクトル・ABベクトル=0の3つを言うことで証明していますが、このうちの2つだけを示す事でも垂心があることが言えると思うのですが3つとも言わないといけないのですか?教えてください。

  • ベクトルの問題

    簡単な問題だと思うのですが次の証明が分かるので教えてください。 問題 三角形ABCの内心をI、外心をO、垂心をH、重心をGとする。三角形の三辺の長さをBC=l,CA=m,AB=nで表すことにする。 (1) OI(→)=lOA(→)+mOB(→)+nOC(→)/l+m+n を示せ。 (2) OG(→)=OA(→)+OB(→)+OC(→)/3 を示せ。 (3) OH(→)=OA(→)+OB(→)+OC(→) を示せ。 以上三問の証明です。 なおベクトルOAの場合OA(→)と示しています。 (これが正式な表記法かどうかは分かりませんが)

  • ベクトルの問題

    ベクトルの問題が解けなくて困っています。 ------------------------------------------- 鋭角三角形ABCの外心をO 頂点Aから対辺BCに下ろした垂線と、頂点Bから対辺ACに下ろした垂線の交点をHとおく。 このとき、次の問いに答えよ。 (以降、文字はベクトルを表しています) a=OA b=OB c=OC とおく。 OHをa,b,cを用いてあらわせ。 ------------------------------------------- 「OH=a+b+cと置くとき、点Hが垂心であることを示せ。」 なる問題は解いたことがあるのですが、 逆から聞かれて、攻めあぐねています。 よろしくお願いします。

  • 平面ベクトル(内積を使う問題で)

    平面ベクトルでの質問があります。 ご教示戴ければ幸いです。 [問1] (1) OA=2√2、OB=√3、(→OA)・(→OB)=2の時、△OABの垂心をHとする時、(→OH)を (→OA)と(→OB)で表せ。 [答え](→OH)=1/10(→OA)+3/5(→OB) Hが垂心⇔(→AH)・(→OB)=(→BH)・(→OA)=0…(1) で (→OH)=s(→OA)+t(→OB)と置く、、、、 まで分かったのですがどうやって (→OH)を(→OA)、(→OB)の和で2通りに表せるのでしょうか? (2)平面上にO、A、B、Cがある。(→OA)+(→OB)+(→OC)=(→0) 、OA=2、OB=1、OC=√2の時、△OABの面積を求めよ。 [答え] √7/4 ((→OA)・(→OB)=-3/2) ヒントには"cos∠AOBを求めよ"とあるのですが、 どうすればcos∠AOBが求まるのでしょうか?

  • 数学の問題が解けません!

    数学の問題が解けません! 難しくは無い問題ですがどうしても解き方が思いつきません。 解き方をおしえてもらえればありがたいです。 問題1 (1/3)^n×cos(nπ/3)の無限級数を求めよ。 問題2 三角形ABCの外心をOとしてOHベクトル=OAベクトル+OBベクトル+OCベクトルを満たす点Hをとる。ただし、三角形ABCは直角三角形ではない。 辺BC,CA,ABの中点をD,E,F、線分AH、BH、CHの中点をA1、B1、C1とする。D、E、F、A1、B1,C1はOHの中点Mを中心とするある円K上にある。 またAHとBC、BHとCA、CHとABの交点を順にP,Q,RとするとP,Q,Rは円K上にあることを示せ。

  • ベクトルの問題が…

    高校生ですが、この問題がどうしても解けません。(1)からいろいろ試みましたが不本意ながら出来ませんでした。 問題 鋭角三角形ABCの外心をO、垂心をHとする。また、円Oの周上の動点Pに対し、QはOQ→=1/2(OA→+OB→+OC→)-1/2OP→を満たす点とする。OA→=a→、OB→=b→、OC→=c→とおく。 (1)OH→をa→、b→、c→を用いて表してください (2)OP→=OH→-2OQ→を証明してください (3)点Qの軌跡は円であることを示し、中心と半径を教えて下さい。 答え(1)OH→=a→+b→+c→   (2)証明略   (3)証明略      中心:線分OHの中点      半径:円Oの半径の1/2 よろしくお願いします。

  • 数B ベクトルの質問

    数B ベクトルの質問です。 鋭角三角形ABCの外心をO、辺BCの中点をMとし、Aから辺BCに下ろした垂線上に点HをAH=2OMとなるよう定める。このとき、 ベクトルOA=ベクトルa ベクトルOB=ベクトルb ベクトルOC=ベクトルCとする。 その上で、ベクトルOHをベクトルa、ベクトルb、ベクトルcを用いて表せ。 また、Hは鋭角三角形ABCの垂心であることを証明せよ。 お願いします。

  • 垂心を用いた問題についてアドバイスお願いします。

    垂心を用いた問題についてアドバイスお願いします。 証明自体は長くないのですが、等式がなぜ成り立つのかがわかりません。 【問題】 △ABCの垂心をHとすると、AH^2+BC^2=BH^2+CA^2=CH^2+AB^2であることを証明せよ。 一通り考え、解答を見ました。 AH,BCの交点をDとすると、 AB^2-AC^2=BD^2-CD^2=BH^2-AB^2…(1) ∴BH^2+CA^2=AB^2 他も同様に証明できる。 (1)の等式は何を表しているんでしょうか? AB^2-AC^2は△ABCの隣り合う二つの辺の差の二乗だと推測しましたが、それ以上進展せず袋小路に陥ってしまいました。 もしお時間がいただけましたらご教示下さい。 よろしくお願いします:) 補足)一応写真も撮りましたが、見辛いと思います。

  • 高2のベクトルです

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点Oに下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ この問題の(3)なんですが ・Hは平面ABC上の点 (1) ・→OH⊥→AB、→OH⊥AC(2) 以上の条件を使うらしいのですが(2)は以下のとおりでいいのですか? →OH⊥→ABは6ax+6by+6cz=0 →OH⊥ACは4ax+4by+4cz=0 (1)はどうやって表したらいいのですか? 教えてください。 あとできたらのでいいので(1)のほうも教えていただけませんでしょうか?

  • ベクトル、外接円、垂心

    鋭角三角形ABCの外接円の中心をO、辺BCの中点をM、頂点Aから辺BCに下ろした垂線の足をD、 頂点Bから辺ACに下ろした垂線の足をEとし、直線AD、BEの交点をHとし、 (→)OA=(→)a、(→)OB=(→)b、(→)OC=(→)cとする。 (ベクトルABを(→)ABと表記することにします) (1) (→)OHを(→)a、(→)b、(→)cをを用いて表せ (2) 円Oの周上の点Pに対し、Qは   (→)OQ=1/2{(→)OA+(→)OB+(→)OC}-1/2(→)OPをみたすとき  (i)点Pが外心Oに関するAの対称点A'のとき、Qが線分AHの中点であることを示せ  (ii)点Pが円Oの円周上を動くとき、点Qの軌跡を求めよ 始めから詰まってしまいました。 (→)AD=s(→)AB+(1-s)(→)ACとおくと (→)AD=s{(→)b-(→)a}+(1-s){(→)c-(→)a} =-(→)a+s(→)b+(1-s)(→)c また(→)AD//(→)OMより (→)AD=(1/2)t{(→)b+(→)c}で係数比較と思ったのですが あれ?・・・(→)aは・・・(;´Д`) 出来れば(2)のほうもよろしくお願いします