• ベストアンサー
  • 困ってます

2つの放物線と共通接線により囲まれている図形の面積

2つの放物線C1:y=x^2-(a+1)x+a とC2:y=x^2-(a-1)x-a がある。ただし-1<a<1。 (1)C1とC2の両方に接する直線lの方程式を求めよ。 (2)C1とC2およびlによって囲まれた図形の面積を求めよ (1)はC1上の点(t、t^2-(a+1)t+a)における接線をあらわして、それがC2に接しているから、それとC2を=でつないで、判別式=0をりようしたところ、 l:y=ax-a^2-1/4となりました。 計算が不安です。 解答のプロセスとしてはこれでいいのでしょうか? ほかにもやり方があれば教えていただきたいです。 (2)がよくわからないのですが、C1とC2の交点のx座標、C1とlの交点のx座標、C2とlの交点のx座標を出さなければならないのでしょうか? 面倒だとは思いますが、回答いただけると幸いです。 宜しくお願いいたします

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

(1)は他の方々が答えておられるので、(2)についてアドバイスをしておきます。 >C1とC2の交点のx座標、C1とlの交点のx座標、C2とlの交点のx座標を出さなければならないのでしょうか? その方針でいいと思います。ただ、(1)で判別式=0となる様にしましたからC1-l,C2-lの式は因数分解できそうですね。 実際、x^2-(a+1)x+a-(ax-a^2-1/4),x^2-(a-1)x-a-(ax-a^2-1/4)を因数分解すると (x-A)^2という形に因数分解できます。だから、x座標は簡単な形にまとまります。 積分もこのまま ∫(x-A)^2dx=1/3(x-A)^3+C で計算すると後の計算も難しくないと思います。トライしてみて下さい。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2

(1)の他のやり方ですが参考程度に C1:y=x^2-(a+1)x+a このC1の点(t、t^2-(a+1)t+a)における接線は y'=2x-(a+1)なので y1=(2t-a-1)(x-t)+t^2-(a+1)t+a =(2t-a-1)x-t^2+aとなる。同様にして C2:y=x^2-(a-1)x-a  このC2の点(s、s^2-(a-1)s-a)における接線は y2=(2s-a+1)x-s^2-aとなる ここy1とy2が同じ直線であるとするならば、 (1)y1の傾き=y2の傾きと(2)y1の切片=y2の切片で連立方程式をたてて解き t=a+1/2 ,s=a-1/2 と出るので、y1,y2どっちでもいいのでsまたはtを代入して y=ax-a^2-1/4を得る このやり方だと検算できるんですよ。s.tのどちらか余っている方を計算すると。 (2)は三点を出してa点で二つにわけてゴリゴリ積分計算するしかないのでは・・・。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • dyna43
  • ベストアンサー率24% (118/478)

自信はないですが、 (1)の答え、あってそうです。 あえて、別解を書くなら、接線の方程式をy=px+qと置き、この直線とC1に関し、判別式D=0、同様にC2についてD=0として、連立方程式を解く方法。 (2)は積分が必要そうなので、各x座標を求める必要がありそうです。 面倒なので求めてません、ごめんなさい。 どこで、aの範囲が効いてくるのかが疑問のままですが...

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答ありがとうございます。 >どこで、aの範囲が効いてくるのかが疑問のままですが... 私もよくわかりません。なぜaの範囲が必要なのでしょうか??

関連するQ&A

  • 放物線と共通接線

    手持ちの参考書などで探しても、放物線のx^2の係数が存在する時の証明が見当たらなかったので、こちらで質問させて頂きます。 2つの放物線(aとpとqは実数)、 y=ax^2…(1)とy=a(x-p)^2+q…(2)が共通接線を持ち、 その接点のx座標をそれぞれ、α、βとおくと、 2つの放物線の交点のx座標は(α+β)/2になる。 ということを証明したいのですが、 共通接線をy=mx+nとおく。 これと(1)の交点はax^2-(mx+n)=0、 そして共通接線と(1)はx=αで接するのでa(x-α)^2=0、 つまりax^2-(mx+n)=a(x-α)^2 共通接線と(2)の交点はa(x-p)^2+q-(mx+n)=0、 そして共通接線と(2)はx=βで接するのでa(x-β)^2=0 つまりa(x-p)^2+q-(mx+n)=a(x-β)^2 としたのですが、ここからどうやってpとqを消したら良いのか分からず、行き詰まっております。 考え方のアドバイスと共に解説して頂けると嬉しいです。 宜しくお願いします。

  • 放物線 接線

    Pを放物線y=x^2上の動点とする Pにおけるこの放物線の接線とこの接線へ点A(0、a)から下ろした垂線との交点が常にx軸上にあるようにaの値を定めよ 接線の接点を(α、α^2)とおくと接線の方程式はy=2α(x-α)+α^2となって、この方程式の傾きが、Aから接線へ下ろした垂線の方程式の傾きとかけると-1になることと、x軸上に交点があるから連立方程式の解がy=0となることは分かるのですが、それをすることができません 解き方を教えてください

  • 放物線の問題です。

    放物線 y=2x^2 点(0.1)を通る傾きaの直線を lとするとき、次の問いに答えよ。 (1)直線lの方程式を求めよ。 (2) 放物線 y=2x^2と直線lの2つの交点のx座標を α β(ただしα<β)とする時、α+β、αβの値を求めよ。 (1)は y=ax+1 とわかり そのあと(2)で 2x^2-ax-1=0の解を求めればα+β αβが出るとわかったのですがここからどうやって解を求めればいいかわかりません。 教えていただきたいですよろしくお願いいたします。

  • 共通接線

    曲線C:y=ax^3+bx^2+cx+dが、x=0で放物線y=x^2-2x+3と共通な接線をもつとき、c,dの値を求めよ。さらに、曲線Cがx=2で直線y=3x-7に接するときa,bの値を求めよ。 接点を文字で置き換えて、接線の方程式に代入してみたのですが、文字が多くなってしまい、わけがわからなくなってしまいました。 共通な接線をもつときは、どのように解けばいいのでしょう? 途中計算から教えていただけると嬉しいです。

  • 2つの放物線

    C1:y^2+2x+1 C2:y=x^2-4x+1 C1とC2の交点の座標は(□,□)である。 また、この点におけるC1の接線l1の 方程式はy=□x+□ 解き方が分からないのですが 教えてください。

  • 数学の問題がわかりません。

    数学の問題がわかりません。 aを正の定数とする。2つの放物線C1:y=x^2 と C2:y=(x-2)^2+4a の交点をPとする。 (1)放物線C1上の点Q(t,t^2)における接線の方程式を求めよ。更に、その接線のうちC2に接するものをLとする。Lの方程式を求めよ。 (2)点Pを通りy軸に平行な直線をmとする。Lとmの交点をRとするとき、線分PRの長さを求めよ。 (3)直線L,mと放物線C1 で囲まれた図形の面積を求めよ。 わかりません。。 お願いします!!

  • 放物線と接線

    放物線y2=4x(yの2乗)の直交する二接線の交点の軌跡を求める問題です。 この放物線は分かるんですけど、直交する二接線の交点が良く分かりません。 この軌跡はどうなるのでしょうか。 以前この問題の解答が出ていましたが読んでもよく分かりませんでした。 また、微分・積分を使わない方法はありますか。中学生程度の知識で解けますか。 よろしくお願いします。

  • 放物線 点の集合

    2つの放物線y=x^2とy=ax^2+bx+cとは二点で交わり、交点におけるこれら2つの放物線の接線は互いに直交するという a、b、cが変化するとき、このような放物線y=ax^2+bx+cの頂点の全体はどのような集合を作るか 2x*(2ax-1)=-1なのは分かりますが、交点は解の公式を使っても非常に複雑で恐らく使わないので手詰まってます 解き方を教えてください

  • 放物線の接線

    放物線の接線の公式ってありますでしょうか? 問題で、放物線の式はわかっていて、その放物線上の点のX座標をaと置く。しか書いていなくて、その接線の式を求めるようなのですが、わかりましたら教えてください。。。

  • 積分で面積を求める

    「xy座標平面において、放物線C:y=x^2 および放物線C上の2点A(a,a^2)、B(b,b^2)が与えられている。ただしa>b。点Aおよび点Bにおける放物線Cの接線をそれぞれla、lbとして次の各問いに答えよ。 (1)接線la,lbの交点の座標を求めよ。 (2)放物線Cおよび2本の接線la,lbで囲まれている部分の面積Sを求めよ。 (3)a,bはab=-2を満たし、aが正の数の範囲で変化するとき(2)で求めた面積Sの最小値を求めよ」 という問題に取り組んでいます。 (1)la:y=2ax-a^2、lb:y=2bx-b^2と出て、交点の座標は、2ax-a^2=2bx-b^2として出しました (a/2+b/2、ab) (2)は2つの部分に分けて積分計算しようとしたのですが、うまくいきません。複雑すぎるのですが、何かいい方法はあるのでしょうか? (3)は(2)が出ていないのでわかりません。 回答いただけるとありがたいです。宜しくお願いします