• ベストアンサー
  • 困ってます

積分で面積を求める

「xy座標平面において、放物線C:y=x^2 および放物線C上の2点A(a,a^2)、B(b,b^2)が与えられている。ただしa>b。点Aおよび点Bにおける放物線Cの接線をそれぞれla、lbとして次の各問いに答えよ。 (1)接線la,lbの交点の座標を求めよ。 (2)放物線Cおよび2本の接線la,lbで囲まれている部分の面積Sを求めよ。 (3)a,bはab=-2を満たし、aが正の数の範囲で変化するとき(2)で求めた面積Sの最小値を求めよ」 という問題に取り組んでいます。 (1)la:y=2ax-a^2、lb:y=2bx-b^2と出て、交点の座標は、2ax-a^2=2bx-b^2として出しました (a/2+b/2、ab) (2)は2つの部分に分けて積分計算しようとしたのですが、うまくいきません。複雑すぎるのですが、何かいい方法はあるのでしょうか? (3)は(2)が出ていないのでわかりません。 回答いただけるとありがたいです。宜しくお願いします

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • tan816
  • ベストアンサー率27% (21/77)

こんにちわ。 (2)の問題を解いて見ましょう。 DcSonicさんのおっしゃる通り、2つの部分に分けて計算していきます。 まず(1)で2本の直線の交点が(a/2+b/2, ab)と出ました。 ここでX座標のみに注目し、さらにa>bも考慮し、直線と2次関数の交点のX座標(bとa)を考えると、 b < x < a/2+b/2 が、2次関数とlbを使い、 a/2+b/2 < x < a が、2次関数とlaを使いますね。 ですから∫[a/2+b/2,b] X^2-2bx+b^2 dx 同じく ∫[a,a/2+b/2] X^2-2ax+a^2 dx あとは普通に定積分を解いていき、足し合わせれば面積は出ると思います。 そこまで複雑ではない気がしますが、間違っていたらすいません。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
  • postro
  • ベストアンサー率43% (156/357)

こんにちは ∫(x-a)^2dx =(1/3)(x-a)^3 + C を知っていると便利です。これを使ってみて!

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の積分?面積?に関する問題なのですが・・・

    数学の積分?面積?に関する問題なのですが・・・ 放物線C:y=x^2上の点A(a, a^2), B(b, b^2) をとる。ただし、b<0<aとする。 (1)放物線Cの点Aにおける接線と点Bにおける接線の交点の座標を求めよ。 (2)放物線Cと直線ABで囲まれる部分の面積Sを求めよ。 (3)三角形OABの面積をTとするとき、T/Sがとりうる値の最大値を求めよ。ただしOは原点(0, 0)である。 積分というものが正直よくわかりません。 なのでどなたか解説お願いします。

  • 放物線 点の集合

    2つの放物線y=x^2とy=ax^2+bx+cとは二点で交わり、交点におけるこれら2つの放物線の接線は互いに直交するという a、b、cが変化するとき、このような放物線y=ax^2+bx+cの頂点の全体はどのような集合を作るか 2x*(2ax-1)=-1なのは分かりますが、交点は解の公式を使っても非常に複雑で恐らく使わないので手詰まってます 解き方を教えてください

  • a,bを0でない異なる定数で、二つの放物線y=ax2-1/4a,y=b

    a,bを0でない異なる定数で、二つの放物線y=ax2-1/4a,y=bx2-1/4bが共有点をもつとき、その点におけるこれらの放物線の接線は直交することを証明せよという問題で ax2-1/4a=bx2-1/4b x2=-1/4ab まで解いたのですがその先が分かりません どのように解けば直交することが証明できるのでしょうか

  • 解いてみせてください><

    「放物線y=ax^2+bx+cは、放物線y=x^2と直線y=x+1の2交点を通り、頂点のy座標は3であるという。a,b,cの値を求めよ。」 どうかわかりやすくおしえてください><

  • 積分の問題です

    放物線y=x^2-2と直線y=axの二つの交点をA,Bとする。2点A,Bの間の放物線上に点Cをとり、放物線と線分ACで囲まれた図形の面積をS1、放物線と線分BCで囲まれた図形の面積をS2とする。このとき、S1+S2の最小値をaを用いて表せ。 (一対一対応の数学II、p160の演習11) 以下は別解です 放物線y=x^2-2と直線y=axが囲む部分の面積をSとおくと、S1+S2=S-△ABCである。そこで、△ABCの面積が最大になる場合について考える。 ここで図形が書いてあるのですが、点Cの位置はCでの接線が線分ABに平行になるような場所になっています。 これはなぜなのでしょうか? よろしくおねがいします。

  • 問題

    個別指導をしている子に聞かれたのですが分からないので教えて頂きたいです。   y=x^2 と y=ax^2+bx+cとは2点で交わり交点におけるこれら2つの放物線の接線は互いに直交する。 a,b,cが変化するときy=ax^2+bx+cの頂点の全体はどのような集合を作るか図示せよ。   という問題です。 解法の手がかりだけでも構いませんのでよろしくお願いします。

  • 放物線と図形の面積

    放物線nは、y=1/4x2乗のグラフである。放物線nと直線mの交点をA,Bとする。Aのx座標が-8、Bのx座標が6である。 (1)放物線上の原点0から点Bの間に点Pを取り、三角形APBの面積が70になるようにする。このときの点Pの座標を求めよ。 という問題と (2)傾き2で平行四辺形AOBQの面積を二等分するような直線の式を求めよ。 (点Qは四角形AOBQが平行四辺形になるようにとる) という問題がわかりません。 (1)は、直線ABを底辺として考えるのでしょうか?三平方の定理を使ってABの長さを出しても、その先がわかりません。 (2)はまったく解りません どなたか 助けてください  行き詰ってます! よろしくお願いします

  • 2つの放物線と共通接線により囲まれている図形の面積

    2つの放物線C1:y=x^2-(a+1)x+a とC2:y=x^2-(a-1)x-a がある。ただし-1<a<1。 (1)C1とC2の両方に接する直線lの方程式を求めよ。 (2)C1とC2およびlによって囲まれた図形の面積を求めよ (1)はC1上の点(t、t^2-(a+1)t+a)における接線をあらわして、それがC2に接しているから、それとC2を=でつないで、判別式=0をりようしたところ、 l:y=ax-a^2-1/4となりました。 計算が不安です。 解答のプロセスとしてはこれでいいのでしょうか? ほかにもやり方があれば教えていただきたいです。 (2)がよくわからないのですが、C1とC2の交点のx座標、C1とlの交点のx座標、C2とlの交点のx座標を出さなければならないのでしょうか? 面倒だとは思いますが、回答いただけると幸いです。 宜しくお願いいたします

  • 微分の問題です

    質問させていただきます 点(1,-3)を通る放物線y=ax^(2)+bx+cが、曲線y=x^(3)+dxと点(2,6)において共通の接線をもつとき、定数a,b,c,dの値を求めよ。 お願いします

  • 「放物線と三角形の面積」の問題が分かりません。

    図のように、放物線y=x²上に2点A(-3、 9)、B(4、 16)があり、この放物線上の点Aと点Bの間に点Pをとる。 次の問いに答えなさい。 (1) 点Pからy軸に平行な直線を引き、直線ABとの交点をQとする。点Pのx座標をtとして、PQの長さをtを用いて表しなさい。 (2) △ABPの面積が21になる時の点Pの座標を求めなさい。 この問題の答えと、解き方を教えて下さい。 よろしくお願いしますm(__)m