• 締切済み

導線中で電流は均一に流れるんですか?

ごく細い導線の表面での磁場がどの程度になるのか見積もり、そこでの磁場の効果を見てみたいのですが電流が均一でないのだとするとそれぞれの電流から生じる磁場で相互作用すると思うんです。そうすると見積もれない気がして。表面でのミクロな環境が知りたいのです。電磁気についてぜんぜんわかっていないので、よろしかったら詳しく教えてください。

みんなの回答

  • tnt
  • ベストアンサー率40% (1358/3355)
回答No.1

直流電流であれば均一になります。 高周波電流の場合は、たしかに相互作用が生じて、 結果的に表面に電流が集中します。 表皮効果&高周波で検索してみてください。 代表的なものを下に示します。 http://www.sf.t.u-tokyo.ac.jp/~fuji/skin_effect2.html のコンダクタンスをdIに置き換えると、 求めるものになるかもしれません。

参考URL:
http://www.sphere.ad.jp/hal/shack/emc/emcmap.htm
take0909
質問者

お礼

どうもありがとうございました。 とても助かりました。

関連するQ&A

  • 導線に電流を流すと同心円型の磁場が出来るのはなぜですか?

    中学の理科では導線に電流を流すと電流の進行方向に対して時計回りに同心円型の磁場が出来るのと習いましたが、これはなぜなのでしょうか? これをフレミングの法則などで説明することは可能なのでしょうか? また、これを表皮効果との関係もありましたら教えて下さい。

  • うず電流

    導体を磁束が貫いているとき、その磁束が変化するか、又は導体が磁束をきると、当該導体内部に電磁誘導作用によって起電力が誘導される。この起電力は当該磁束の変化を妨げる方向に発生し、当該導体内に渦状に分布して流れます・・・この電磁誘導というのは自己誘導作用によるものと考えてよいのでしょうか。  当該コイルは、この起電力(いわゆる逆起電力といわれるのでしょうが)により、電源電圧がつりあったところで、一定の電流が流れるという理解でよろしいでしょうか。(安易に捉えてしまうと、電源電圧により電流が流れて、逆起電力ができてそれらがつりあうと、電流が流れない?と考えがちなので・・・)  うず電流についてですが、相互誘導作用によっても発生するのでしょうか。というのは、たとえばコイル1による磁束の変化により、コイル2が相互誘導作用により、コイル2に巻かれている導体に電流が流れる(方向は磁束の変化を妨げる方向)が、同様に、当該導体内部にもうず電流は発生するのでしょうか。そんなことがありえるのでしょうか。なお、発生するのであれば、コイルに巻かれた導線に流れる電流と内部の導体内のうず電流の方向は同じになると言うことでしょうか。 また相互誘導作用によるうず電流を発生するとともに、もとのコイルでは自己誘導作用によるうず電流も発生すると考えてよいのでしょうか。

  • 導線は電圧が0でも電流が流れる理由

     導線はその両端の電圧がゼロでも電流が流れるものであると、むかし高校の物理で習いました。  ところで、どうして導線は電圧がゼロでも電流が流れるのか、その理由をちゃんと考察したことがありませんでした。そこで考察を始めたいと思います。 「起電力V、内部抵抗ρの直流電圧源を金属導線で短絡すると、Vのほとんどはρに印加され、導線内部の電圧分布はほぼ0である。クーロン相互作用によってρの内部にある電子がρの正極側(端子a)に移動して、そこから金属の内部に注入される。電子はフェルミ粒子なので、金属内部の自由電子であっても半導体同様に状態数は限定され、それ以上の電子は入れない。従って、導線のもう一方の端である電圧源の正極(端子b)から電子が叩き出され、このときbとaの間を”変位電流”が流れる」  抵抗ρの電子が伝導電子としてそのまま正極に行くのではなく、導線の中を変位電流が流れると言う、妙な結論になりました。換言すれば、トコロテン式に電子が押し出される、となりますか。  これで物理的におかしな所はございませんでしょうか?物性に詳しい方のご回答をお待ちしております。

  • 電流と鉄粉の模様

     例えば、直線の導線に電流を流すと磁場ができますよ ね。その導線の周りに鉄粉を播いてならすと木の年輪み たいな模様ができます。  とりあえず、▽×B=μi+εμdE/dt(偏微分 記号がでないので代わりにdとしました。)というのは 知っていますけど、模様がでるという事は含まれていま せん。  何がどの様に影響して鉄粉の模様が不均一になるので しょうか?

  • 電流の周りに電磁場が発生する理由とエネルギー保存

    導線に時間変化する電場を掛けると電流のほかに電場と磁場が周囲に発生します。これだと電場を掛けると電流のエネルギー(電力量)だけでなく電磁場のエネルギーも生まれてるように見えてしまいます。 また図のように回路Aに電場を掛けて電流を流すと、回路Bにも電流が流れると説明がありました。回路Aに電流を流して、さらに回路Bでも電流が流れたらエネルギー保存則に反しているように思えるのですがどのようにエネルギー収支が行われてるのですか?ジュール熱のように導線中を電流が流れる過程で、"何かしら"が原因のエネルギー損失分が双極子放射と同様で電磁波という形で散逸してるようにも考えましたがやっぱり釈然としません。 電場を印加すると電流を流すだけでなく電場・磁場も発生させ、近傍の導体に誘導電流も流したらエネルギー保存に反しているように思えるのですが、電磁場の発生と電磁誘導についてどのように考えればよいのでしょうか。 どなたかご教授お願い致します

  • 電磁波と光子

    電磁波と光子 古典的な電磁気学を勉強してます。 基礎的な質問だと思うのですが、 マックスウェル方程式によれば、 rotE=-∂B/∂t divD=ρ rotH=J+∂D/∂t であるから 電界の波動方程式が求まって そこからヘルムホルツの方程式が導けて 電場と磁場の関係から x軸方向に電場が正弦波状に変化するとき y軸方向に磁場も正弦波状の変化をするっていう あのよく見かける電場と磁場が一緒に描かれてる図まではなんとなく理解して 電磁誘導→電場ができる 変位電流→磁場ができる 要するに「電場と磁場の相互作用が電磁波」みたいなまとめでわかった気になってたんですけど、 光は「光子」というボース粒子によって電磁力を伝えたりして、光子は質量ゼロ、電荷ゼロであって…… みたいな量子力学の解説書に、光子は電場や磁場との直接的な相互作用はほとんどないって書いてあって、 たしかに電荷ゼロなら影響ないだろうなって思うんですけど 光 =空間の電場と磁場の変化によって形成される波(波動)である。 =微視的には、電磁波は光子と呼ばれる量子力学的な粒子 (wiki) みたいに書いてあって、 電場(静電場?)って重ね合わせの原理が成り立つから 電磁波が電場と磁場の相互作用なら、真空中とかで電磁波に電場とか加えるとなんとなく振幅が変わるような影響を簡単に受けそうな感じがするので、光子に電場や磁場との相互作用がほとんどないって記述がどうも引っかかって…… でも電磁波と電場および電場のかかっている物質との間に作用するいわゆる電気光学効果(ポッケレス効果とか)は非線形光学結晶などが必要と聞きかじり、電磁波の波長を変換したりするのって大変なんだなーって思うところまで勉強しました。 粒子性と波動性があるといろいろ複雑なのでしょうか…… 粒子性で考えると影響なくて 波動性で考えると電気光学的な影響がある…みたいな そもそも電磁波の波長とかってnmレベルですし、ただの波じゃなくて複素数の波動関数ですもんね。 あ、完全に影響なかったらそもそも非線形光学効果なんてないのだから、「ほとんど」影響ないってのはそういうことか… 量子論を修めろってことですね…… 己が浅学さを反省して、そろそろ19世紀の考え方から20世紀の考え方に移行しようと思います。

  • 磁場内に置かれた導線に発生する起電力について

    物理(電磁気)に関してです。 以下問題文です。 半径rの円形の導線を水平に固定し,鉛直上向きに磁束密度の大きさBの一様な磁場を加える。この導線上に,長さ2rの軽い金属棒をのせ,その中点を導線の中心Oに固定した。金属棒は導線上を滑らかに回転することができるものとする。 次に点Oと導線上の一点とを,抵抗値Rの抵抗で接続し,金属棒を一定の角速度ωで回転させた。この抵抗を流れる電流の大きさはいくらか。最も適当なものを選べ。 起電力を発生する予想は立ちますが, 導線が円運動をする為この両者がどのように 影響を及ぼすか目処が立ちません。 きっかけとなる解法をご教授頂きたいと思います。

  • 真空中で使用できる導線

    真空中(10^-8torr程度)でSUS304などで作った中空の円筒(半径190mm)を真空容器内につるします(真空容器内壁からの支持物で固定)。 そこで、その円筒上にコイルを巻こうと考えているのですが、どのような線を用いればよいでしょうか?流す電流は1[kA]を1[ms]程度です。 円筒がSUS304で作製する予定なので導線は被覆導線が望ましいのですが、真空系を汚す恐れがあるなど問題があります。セラミック被覆導線というのもあるらしいのですがあまり曲がりにくいという話です。 ですので何かいい方法があれば教えてください。もし、裸導線でいいものがあるのならば円筒を絶縁物に変えても良いです。もちろん磁場に影響がなくガスが出ないものでないといけませんが。そちらの方の案もあればお願いします。 色々質問してしまいましたがよろしくお願いします!

  • 電磁誘導された 電流の磁力の合成を0にしても電流は止まらない?Fは0になる? 

    電磁誘導された  2本の少し離して平行した導線の電流の周りに発生した磁力を 界磁磁石方向に、 この発生した2つの磁力同士を近づけて打ち消しあって ベクトル合成してできるだけ 0 に近くした場合、 それでも電流は止まらないのでしょうか? もし電流が止まらない場合、 界磁方向ベクトルの磁力線の密度は均一に近くなるので フレミングの法則によるFBIの Fは働かなくなるのでしょうか?  

  • 電磁誘導の原理について

    電磁誘導の原理とは具体的にはどのようなものでしょうか。ここでの「原理」は、例えば「飛行機が飛ぶ原理」のように、仕組みや理由という意味で用いています。 動くのが、磁場と導線、どちらの場合でも、導線が磁場を横切ると、導線に電流が流れるのは、どういう原理によるのか、具体的に教えてください。 一応私的な考えを述べておきます。代案があろうとなかろうと間違いは正すべきであり、間違いの指摘は大歓迎ですが、代案があれば尚一層有り難いです。「定説と違う」というご指摘においても、その定説で、この根本的で単純な質問にお答えいただきますよう重ねてお願い申し上げます。 光(電磁波)は、電場の変化が磁場を生み、磁場の変化が電場を生みというように、電場と磁場が、互いに相手を生み出しながら空間を伝わっていくと考えられている。このような電場と磁場の波を伝えることができるのは、空間が、誘電体・導体・磁性体同様電磁気的性質を持っているからである。誘電体・導体・磁性体の電磁気的性質のおおもとは、電子と陽子という荷電粒子であり、空間の電磁気的性質のおおもとも、同様に荷電粒子であると考えられる。空間の電磁気的性質のおおもとの荷電粒子=光の媒質の構成要素を素電子、そのプラスの方を陽電素、マイナスの方を陰電素と呼ぶことにする。 ここでもし、空間は電磁気的性質を持っていないというなら、なぜ電場と磁場の波を伝えることができるのか、空間の電磁気的性質のおおもとは荷電粒子ではないというなら、では何なのかということになる。 コンデンサに電流を流すと、導線だけでなく、極板と極板の間のところにも磁場が発生する。電流が磁場を生むという原則に従えば、磁場が生じる極板間には電流が流れていることになる。極板間では、陽電素がマイナス極に、陰電素がプラス極に移動することで電流が生じているのである。 図1は電場・磁場・電磁場における素電子の並びを表している。 電磁場で、素電子は画面奥に転がっていき、その反動で帯電体(と磁石)は画面手前に動く。磁石と帯電体を図の様に配置すると、素電子を移動させるポンプに、また素電子を吸い込み噴き出すことで推力を得るエンジンになり、それらは人為的な入力エネルギーを必要としない永久機関である。この効果は、磁石と帯電体の、力が強いほど、大きさが小さいほど大きくなる。ローリスクスーパーハイリターン。企業様とか、笑っている暇があったら今すぐ実験に取り掛かるべき。 図2 導線が磁場を横切ると導線に電流が生じる。導線が磁場を横切ると、導線中の電子に磁場が巻き付き、磁場は電磁場になり、電子を動かす。素電子の存在を認めると、電磁誘導の原理も一目瞭然になる。 図3 電磁誘導の原理から、電子と素電子では、自転と磁極の関係が逆になっていることがわかる。電子と素電子で自転と磁極の関係が逆なのは、電荷のおおもとである素電子が渦で、電子はその複数体であり、転向力の作用によって、両者の回転方向が反対になるからである。 図4 台風とサイクロンが次々に発生していつまでも消えなかったらこの様になるのではないか。転向力の作用により、台風は反時計回りに渦を巻きながら時計回りに進み、サイクロンは時計回りに渦を巻きながら反時計回りに進む。電荷と渦には「転向力の作用により、単体と複数体では回転方向が反対になる」という共通性がある。 素電子が台風のような渦であるなら、渦が生じる大気と、その構成粒子が存在するはずで、それこそが素粒子なのではないか。 コバルト60のベータ崩壊で、電子が、原子核のS極から出てくるのは、電子に、S極を後ろにして進む、左ねじ運動する性質があるからではないだろうか。この「転向力による回転方向の偏り」は台風と共通するものである。 図5 前回の質問では、電荷と渦には「放射状と同心円」という共通性があると述べた。https://okwave.jp/qa/q9560257.html 電荷と渦には、今回の質問で「転向力による回転方向の偏り」「転向力の作用により、単体と複数体では回転方向が反対になる」という共通性が追加された。渦に「転向力の作用による、運動に伴う回転の増大」という性質があれば、電荷と渦の関係性は更に強まることになる。