- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
f_n(x) = x^2∫(0→π/2) (cost)^2 dt + x∫(0→π/2) 2 sin(2nt)cost dt + ∫(0→π/2) (sin 2nt)^2 dt ここで ∫(0→π/2) (cost)^2 dt = ∫(0→π/2) { (1 + cos2t) / 2 } dt = [ (t/2) + (1/4) sin4t ](0→π/2) = π/4 ∫(0→π/2) 2 sin(2nt)cost dx = ∫(0→π/2) { sin (2nt+t) + sin (2nt-t) } dt = [ - cos{(2n+1)t}/(2n+1) - cos{(2n-1)t}/(2n-1) ](0→π/2) = (- 0 - 0) - { 1/(2n+1) + 1/(2n-1) } = - 4n / (2n-1)(2n+1) ∫(0→π/2) (sin 2nt)^2 dt = ∫(0→π/2) { (1 - cos 4nt)/2 } dt = [ (t/2) - (1/8n) sin 4nt ](0→π/2) = π/4 よって f_n(x) = (π/4) x^2 - {4n/(2n-1)(2n+1)} x + π/4 であり、平方完成すると f_n(x) = (π/4) { x - 8n/π(2n-1)(2n+1) }^2 - (π/4) { 8n/π(2n-1)(2n+1) }^2 + π/4 となるので、 a_n = - (π/4) { 8n/π(2n-1)(2n+1) }^2 + π/4 = -(16/π) { n / (2n-1)(2n+1) }^2 + π/4 …答 n→∞のとき n / (2n-1)(2n+1) → 0 なので a_n → π/4 …答