• ベストアンサー

整函数

実軸に関して対称となる整函数は定数以外にあるでしょうか? 多項式について考えたところ、定数に限られそうでしたので、 もう少し深く知りたい…ということでよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

zの複素共役をconj(z)を書くことにします。 仮に f = f(z)が実軸に関して対称なら、f(z) = f(conj(z))なので、f(z) + f(conj(z)) = 2f(z)、つまり f(z) = (1/2) (f(z) + f(conj(z))となります。f(z) = f(conj(z))なので、f(conj(z))も整関数です。 何が言いたいかというと、 fが実軸に関して対称な整関数なら、あるgが存在し、 ◯ g=g(z)は整関数 ◯ g(conj(z))も整関数 ◯ f(z) = g(z) + g(conj(z))とかける という訳です。 従って、『果たして上のような gはどのようなものか?』というのが本質になります。ここから先は、一度ご自身で考えてみてください。 ヒント:g(z), g(conj(z))に対し、「Cauchy-Riemannの方程式が成り立つ」という強い制約があることを用いよ。

Marico_MAP
質問者

お礼

自分で色々考えていたら、gより前にfのままで以下のようになったのですが、大丈夫でしょうか? 実軸上の実数αに対して f'(α)=lim[h→+0](f(α+ih)-f(α))/(ih) つまり、αに向けてまっすぐ上から降りてくる。一方、αへ向かって下から昇っていってもいいはずで、 f'(α)=lim[h→-0](f(α+ih)-f(α))/(ih) =lim[h→-0](f(α-ih)-f(α))/(ih) (∵f(z)=f(conj(z)) =lim[h→+0](f(α+ih)-f(α))/(ih)*(-1) (-hをあらためてhとおく) =-f'(α) ∴f'(α)=0 αは任意と考えてよいから、f(z)は実軸上で定数である。 0に収束する実数列1,1/2,1/3,…,1/n,…に対してf(1/n)が定数であるから、一致の定理によりf(z)は定数である。 本質的にも考えてみたいので、コーシーリーマンの方程式は遥か忘却の彼方ですが、g(z)でも考えてみます。

その他の回答 (2)

回答No.3

Cauchy-Riemannの関係式を使うと、そうなりますね。偏微分すると符号が反対になるので、結局u, vが xにもyにも依存しない、という結果が得られます。

Marico_MAP
質問者

お礼

ありがとうございました。 大変勉強になりました。 自分が思っていたよりもさらに一般的な事実に触れられて、ついでにコーシーリーマンも偏微分も思い出せて、本当の「勉強になりました」でした。

回答No.2

その証明でも問題ないです。何れにせよ、一軸だけ考えればよい実数上の実数値関数ではなく、実軸方向、虚軸方向の両方を考えないといけないのが、関数の挙動に厳しい制限を与える、ということですね。

Marico_MAP
質問者

お礼

そもそもコーシーリーマンの方程式以前に偏微分が私にはむずかしいのですが… 以下の感じでいいのでしょうか? g(z)、g(conj(z))ともに整関数とする。 g(x+iy)=u(x,y)+iv(x,y) g(x-iy)=u(x,-y)+iv(x,-y) コーシーリーマンの方程式より ∂u(x,y)/∂x=∂v(x,y)/∂y ∂u(x,y)/∂y=-∂v(x,y)/∂x ∂u(x,-y)/∂x=∂v(x,-y)/∂y ∂u(x,-y)/∂y=-∂v(x,-y)/∂x が成り立つ。4つ目の等式から -∂v(x,-y)/∂x =∂u(x,-y)/∂y =∂u(x,Y)/∂Y dY/dy (-y=Yとした) =-∂v(x,Y)/∂x (-1) (2つ目の等式から) =∂v(x,-y)/∂x ∴∂v(x,-y)/∂x=0, ∂u(x,Y)/∂Y=0 また、3つ目の等式から ∂u(x,-y)/∂x =∂v(x,-y)/∂y =∂v(x,Y)/∂Y dY/dy (-y=Yとした) =∂u(x,Y)/∂x (-1) (1つ目の等式から) =-∂u(x,-y)/∂x ∴∂u(x,-y)/∂x=0, ∂v(x,Y)/∂Y=0 以上よりu,vは定数である。 つまりg(z)は定数。

関連するQ&A

  • 整関数について

    お世話になっております。 整関数の定義は、多項式の関数なのでしょうか。それとも別の定義によるものなのでしょうか。

  • 実部Realf(z)が上に有界な整関数は定数である。

    実部Realf(z)が上に有界な整関数は定数である。 証明 Realf(z)<Mとすれば g(z)≡1/[2M-f(z)]は有界な整関数となり定数。よって定数と書いてあるが、 g(z)が有界な整関数はなぜですか。 宜しくお願いします

  • 実部Realf(z)が上に有界な整関数は定数である。

    実部Realf(z)が上に有界な整関数は定数である。 実部Realf(z)が上に有界な整関数は定数である。 証明 Realf(z)<Mとすれば g(z)≡1/[2M-f(z)]は有界な整関数となり定数。よって定数と書いてあるが、 g(z)が有界はなぜですか。 宜しくお願いします

  • ユークリッド整域の種類は無数にあるのですか

    ユークリッド整域の実例としては整数環、ガウス環、一変数多項式環が知られていますが、これ以外にはユークリッド整域は知られているのでしょうか。

  • ユークリッド整域

    整数Z上の多項式環Z[X]がユークリッド整域とならないことを証明したいのですが, どのようにすればいいのかわかりません。 どなたか解説お願いします。

  • 2次関数

    aを定数として、xの2次関数y=x^2-2(a+2)x+a^2-a+1のグラフをGする。グラフGがy軸に関して対称になるaの値を求めよ。という問題なんですけど、y=f(-x)で求めようと思ったんですけど、うまくできません。やり方を教えてください

  • 単項イデアル整域

    「1.ユークリッド整域  2.整数環Z  3.実数上の一変数多項式環R[X]      以上の3つはすべて単項イデアルであることを示せ。」 なのですが、どれか一つでもかまいませんので教えてください。お願いしますm(__)m

  • 整域

    複素数平面C内の連結開集合D上の複素正則関数がなす環は整域かどうか? という問題なのですが、、、教えていただけませんか?

  • 数I・2次関数の問題について質問です。

    数I・2次関数の問題について質問です。 ≪問題≫ 2次関数y=ax^2+bx-6のグラフを原点に関して対称移動し、 さらにx軸方向に-1、y軸方向にpだけ平行移動すると、 グラフは点(-2.0)でx軸に接し、点(1.-18)を通る。 このとき定数a.b.pの値を求めよ。 …という問題で、解答が ≪解答≫ 移動後のグラフを表す2次関数は、【対称移動によってx^2の係数の符号が逆になり】、 かつ点(-2.0)でx軸に接することから、頂点は(-2.0)なので、 y=-a(x+2)^2とおくことが出来る。 (あとは、x軸方向とy軸方向への平行移動、原点に関しての対称移動を戻して…と解答が続きます。) ≪質問≫ 上記の解答で、【対称移動によってx^2の係数の符号が逆になり】という部分が理解できません。 後に、移動後のグラフを移動前に戻す作業があるので、 ここでの【対称移動によって~】が何の事を指しているのかわかりません。 【~x^2の係数の符号が逆になり】なのでx軸に関しての対称移動なのか? という事は考えてみたのですが…。(だとしても、何故ここで対称移動するのかが謎。) 長くなってしまい申し訳ありません。 わかる方いらっしゃいましたら教えてください。よろしくお願いいたします。

  • y=(x+1)2+1 は奇関数ですか?それとも偶関数ですか?

    y=(x+1)2+1 は奇関数ですか?それとも偶関数ですか? 偶関数はy軸に対して線対称じゃなきゃダメなんですよね?