• ベストアンサー

数III 積分 小門集合

(1) lim[n→∞]∫[0,nπ]e^(-x)|sinx|dx (3) lim[n→∞](1/n^2)∫[0,nπ]x|sinx|dx (4) ∫[0,π]x|sinnx|dx 解き方をお願い致します。 因みに、(1)は ∫[kπ, (k+1)π] e^(-x)|sinx|dx=e^(-kπ)(1+e^-π)/2 Σ[k=0,∞] e^(-kπ)(1+e^-π)/2=(1+e^-π)/2(1-e^-π) とやって間違ってました。

noname#249855
noname#249855

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

(1)は計算結果は(1/2)(1+exp(-π))/(1-exp(-π))でいい様な気がするのだが・・!? 途中の書き方が良くないって事!? 途中Σ𝑘₌₀~𝑛₋₁ exp(-kπ)を求めてn➝∞の極限を求める事になると思うのだが!? (3)も(1)と同じ様に計算できると思うのだが・・!? ∫[nπ, (n+1)π]x|sinx|dxでx=nπ+t とでも置いて ∫[nπ, (n+1)π]➝∫[0,π]の範囲の積分に直せるのでその範囲で|sinx|=sinxとなる 後は同じように有限和を求めた後n➝∞の極限を取る (n²が消せる筈) (4)はx=t/nとおいて(3)に帰着される筈

noname#249855
質問者

お礼

ありがとうございました。 無事に解決致しました。 (1)は添削ミスだったそうです。

関連するQ&A

  • 三角関数の積分でどこが間違っていますか

    nは自然数としてlim n→∞∫{0~nπ](e^-x・|sinx|)dx を解く問題です。0~πなら|sinx|の絶対値がとれるので∫{0~π](e^-x・sinx)dxを解いて(e^-x/2)+1/2、よって∫{0~nπ](e^-x・|sinx|)dx=n∫{0~π](e-x・sinx)dx と考えて∫{0~nπ](e-x・|sinx|)dx=n{(e^-x/2)+1/2}よってlim n→∞∫{0~nπ](e^-x・|sinx|)dx は∞。しかし答えは1/2・(e^π +1)/(e^π -1)です。よろしくお願いいたします。

  • 数III 積分教えてください

    (1)∫tanx^2/cosx^2 dxが、(1/3)tanx^3になる計算過程を教えてください。 (2)∫sinx/cosx^2 dxが、1/cosxになる計算過程を教えてください。 (3)∫(3x)^2*e^(-3x)dxが、-(1/3)*(9x^2 + 6x + 2)e^(-3x)+Cになる計算過程を教えてください。 計算途中に出てきたのですが、答えが合いません。 解き方を教えてください。 詳しいとありがたいです。

  • 数学IIIの問題

    n=0,1,2,...について In=(-1)^n/n!∫[0→2]x^ne^x dx とおく。 ただし0!=1とする。 (1)I。の値を求め、n=1,2...のときIn とIn_1の関係式を求めよ。 (2)0≦x≦2に対してe^x≦e^2であることを利用して、次の不等式を示せ。  1/n!∫[0→2]x^ne^x dx≦2e^2(2/3)^n-1 (n=1,2,...) (3)極限 lim[n→∞]Σ[k=0→n](-1)^k2^k/k!を求めよ。 よろしくお願いします。

  • 定積分と不等式

    n=0,1,2,...について In=(-1)^n/n!∫[0→2]x^ne^x dx とおく。 ただし0!=1とする。 (1)In とIn_1の関係式を求めよ。 (2)0≦x≦2に対してe^x≦e^2であることを利用して、次の不等式を示せ。  1/n!∫[0→2]x^ne^x dx≦2e^2(2/3)^n-1 (n=1,2,...) (3)極限 lim[n→∞]Σ[k=0→n](-1)^k2^k/k!を求めよ。 (1)はInを変形してできました。 (2)でe^x≦e^2からx^ne^x≦e^2x^n すなわち ∫[0→2]x^ne^x dx≦∫[0→2]e^2x^n dx を使おうと思ったのですが、1/n!と(1/3)^n-1が作れずできませんでした。 (3)はΣ[k=0→n](-1)^k2^k/k!=(-1)^02^0/0!+Σ[k=1→n](-1)^k2^k/k! =1+Σ[k=1→n](-1)^k2^k/k! となり(1)を利用できそうな感じがしたのですが、よくわかりませんでした。 よろしくお願いします。

  • 積分の問題です。

    lim(n→∞){1/n+n/(n^2+1)+n/(n^2+2)+...+n/(n^2+(n-1)^2)}の極限を求める問題です。 lim(n→∞) (1/n)[k=0→n-1]Σ1/{1+(k/n)^2}となり、 lim(n→∞) (1/n)[k=0→n-1]Σ1/{1+(k/n)^2}[x=0→1-1/n]∫f(x)dx ≦ (1/n)[k=0→n-1]Σ1/{1+(k/n)^2} ≦ [x=1/n→1]∫f(x)dx +1/n 挟み撃ちの定理をつかって求め、答えはπ/4ということはわかったのですが、途中にでてくる両辺の積分の仕方がわかりません。 できるだけ詳しい途中式を書いていただけるとありがたいです。 最初から(lim(n→∞){1/n+n/(n^2+1)+n/(n^2+2)+...+n/(n^2+(n-1)^2)}から)答え合わせもかねてお願いします。

  • 定積分の問題です

    次の極限値を求めよ。 (1)lim(1+2+3+……+n)^5/(1+2^4+3^4+……+n^4)^2 n→∞ (2)lim1/n n(←小さい字)√(3n+1)(3n+2)…(4n) n→∞ (3)  1 n-1  lim∫ Σx^2n+k dx 0 k=0 上のような問題なのですがさっぱりわからなくて困っています。 詳しい解説をつけてくださると助かります。 よろしくお願いします。

  • 積分できるのかどうか教えてください。

    ∫[0,π](sinx)^3(sinnx)dx(nは自然数) は手計算で求められますか? 教えてください。

  • 数III相当 積分関連 方針

    連問投稿で申し訳ないです。 学校で与えられた、詳解のない問題集なのですが、 積分関連が苦手で、消化できないものが5つあります。 答えのない問題集で勉強するのは効率が悪いとは思いますが、 どなたか詳しい方、どうぞよろしくお願いします。答えは最後に書きました。 <第1> 2つの定積分 A=∫[0,π] {e^(-ax)*sin^2(x)} dx 及び B=∫[0,π] {e^(-ax)*cos^2(x)} dx で、AとBを求めよ。 ※A+BとA-Bを求めて、何とかするんじゃないかと思うのですが...? <第2> 関数f(x)はf(0)=0を満たす。また、g(x)=∫[0,x] {(e^x + e^t)*f´(t)} dt とおく。g´(x)を求めよ。 さらに、e^x*f(x)=-3x^2*e^x+g(x) が成り立つとき、f(x)を求めよ。 <第3> 定積分∫[0,1] log{(x+2)/(x+1)} dx の値を求めよ。 さらに、lim[n→∞] 〔{(2n+1)(2n+2)…(2n+n)}/{(n+1)(n+2)…(n+n)}〕^(1/n) を求めよ。 ※log(x+2)-log(x+1)と分解して、それぞれを部分積分してみたのですが、答えにない定数が残ってしまいました。 <第4> x≧0のとき、不等式x-(1/2)*(x^2) ≦log(x+1) ≦x を証明せよ。 さらに、lim[n→∞]  log〔1+{k/(n^2)}〕 を求めよ。 <第5> 定数c≠0としてlim[x→∞] 〔{sin√(x+c)}-{sin√(x)}〕 を求めよ。 答えは、 <第1>A=2{1-e^(-ax)}/{a(a^2 +4)}及び B={a^2 +2}{1-e^(-ax)}/ {a(a^2 +4)} <第2>g´(x)=e^x*f(x) + 2e^x*f´(x)及びf(x)= x^3+3x^2 <第3>log(27/16)及び27/16 <第4>証明は略されてる。極限は1/2 <第5>0                    どうぞよろしくお願いしします。

  • 三角関数の定積分

    nは n≧2 の整数としたとき、  ∫[nπ,(n+1)π] x/{1+(x^6)(sinx)^2} dx < 1/n^2 を示せ、という問題なのですが、上手い解法が見つかりません。 ∫[nπ,(n+1)π] x/{1+(x^6)(sinx)^2} dx < ∫[nπ,(n+1)π] g(x) dx となり、しかも積分出来そうなxについての式 g(x) を新たに置いていけばいいのかなと思いましたが、中々それも思いつきません。 数学に造詣の深い方、どうかご協力お願い致します。

  • 数学の答え合わせをお願いしたいです!

    詳しい方よければ教えてください><* (1) r>0とする Σ[1,∞] { e^(-nx) / (n+1) } はx∈[r,∞) に関し一様収束することを示せ。 (2) 極限値lim[r→+0] ∫[r,1/r] Σ[n=1,∞] { e^(-nx) / (r+1) } dxを求めよ。 (1) ∃L∈N , L≦k<lとなる任意の番号k,lをとり、ε=e^(-rl)とする。 | (e^(-(k+1)x)) / (k+1) + (e^(-(k+2)x)) / (k+2) +・・+ (e^(-lx)) / (l+1) | ≦ | (e^(-lx)) / l + (e^(-lx)) / l +・・+ (e^(-lx)) / l | ≦ |((l-k)e^(-lk)) / l | ≦ e^(-lx) ≦ e^(-rl) = ε よって題意は示された。 (2) lim[r→+0]∫[r→1/r] Σ[n=1,∞] (e^(-nx)) / (r+1) dx = Σ[n=1,∞] lim[r→+0]∫[r→1/r] (e^(-nx)) / (r+1) dx = Σ[n=1,∞] ∫[0,∞] e^(-nx) dx = Σ[n=1,∞] [-(e^(-nx))/n][x=0,∞] = Σ[n=1,∞] 1/n = ∞