• ベストアンサー

数学:縦線形集合の問題です

集合の問題です。 縦線形集合 D={(x,y)∈R²|∅₁(x)≦y≦∅₂(x), a≦x≦b} ここで∅₁,∅₂は有界閉区間[a,b]で連続で∅₁(x)≦y≦∅₂(x)(a≦x≦b)であると仮定されている。 この時集合DはR²の有界閉集合となる事を示せ。 という問題が解けずに困っています。 解答例や解答のヒントが分かる方がいましたら教えて頂きたいです。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

まずDが有界であることは、有界閉区間上の実数値連続関数が最大値、最小値を取る事から分かる。 Dが閉集合である事をいうには、一つの方法としてDの補集合が開集合である事を言えばよく、それにはDに属さない任意の点(s,t)を取った時、(s,t)を含むある開球があって、その開球とDとに交わりが無い事を言えば良い。一つの方針として、 1. s<aの場合 2. s>bの場合 3. a≦s≦b, t<∅₁(s)の場合 4. a≦s≦b, t>∅₂(s)の場合 に分けて、それぞれの場合について示す、というやり方がある。3と4で、∅₁(s), ∅₂(s)が連続である事を使う。

関連するQ&A

  • 数学:集合の問題です

    集合の問題です。 R²の部分集合 E={(x,y)|0≦x≦1,0≦y≦1,x∈Q,y∈Q} は面積確定でない事を示せ。 という問題が解けずに困っています。 解答例や解答のヒントが分かる方がいましたら教えて頂きたいです。

  • 数学の問題です。

    数学の問題です。 問題 実数の集合Rの部分集合MでMが下に有界でないとき、連結なものは次の9種であることを示せ. (1)R (2)(-∞,b] (3)(-∞,b) (4)[a,∞) (5)[a,b] (6)[a,b) (7)(a,∞) (8)(a,b] (9)(a,b) 補題として 「M=A∪B、x∈A、y∈B、x<yのとき M⊂R,∀x,∀y∈M⇒[x,y]⊂Mが成り立つならMは連結である」 を使ってよい です。誰かわかる方、教えてください。 できれば詳細な回答をいただけるとありがたいです。

  • 位相数学の証明問題です。

    (1)R空間の部分集合で連結かつコンパクトなものは有界な閉区間に限ることを示してください。 (3)[a,b]上で定義された実数値連続関数f(x)に対して、正の実数δで次の※性質をもつものが存在することを示してください。 ※|x-y|<δを満たすすべてのx,y∈[a,b]に対して、|f(x)-f(y)|<0.1 の証明を、どなたか分かる方、よろしくお願いします

  • R^nのコンパクト集合についての問題(解析学)

    「U⊂R^nが開集合、C⊂Uがコンパクトのとき、Uに含まれるコンパクト集合Dで、その内部がCを含むようなものが存在することを示せ。」 (スピヴァック「多変数解析学」12ページ) という問題の証明を詳しく教えてください。 ちなみに(1)「あるd>0があって、任意のy∈R^n-U、x∈Cに対して、|y-x|≧dとなる」ということ、「R^nの任意の部分集合にK対して、Kが有界閉集合⇔Kがコンパクト」、ということは分かっていて、ケンタッキー大学のコースで公開されている略解 (http://www.ms.uky.edu/~ken/ma570/homework/hw2/html/ch1b.htmの一番下の部分)を見ると(dは(1)のdとして) D={y∈R^n;∃x∈C∋|y-x|≦d/2}とすると題意のDが得られるということなのですが(D={y∈R^n;∃x∈C∋|y-x|≦d/2}はD={y∈R^n;∃x∈C |y-x|≦d/2}の誤表記?)、Dが閉集合であるということが証明できませんでした。逆に、Dが閉集合であることの証明を教えて頂ければ後は分かります。(回答の手間を少し省ければと思って載せただけなので、解答のやり方でなくても全然構いません。)

  • 数研出版 メジアン 集合の問題

    個別指導塾講師をしている者です。 生徒からの質問で、恥ずかしながらわからない問題があって困っています。どなたか解答お願いいたします。 問題 9で割り切れる整数全体の集合をA、 15で割り切れる整数全体の集合をBとする。 C={x+y|x∈A,y∈B}とするとき、 Cは3で割り切れる整数全体の集合(Dとする)と一致することを示せ。 C⊂DかつD⊂Cを示せばよい。 C⊂Dについては、 z∈Cとすると、 z=x+y=9l+15m=3(3l+5m) よって、C⊂D ここまではわかりました。 このあとのD⊂Cの証明がわかりません。 どなたか解答をお教えください。

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • 有界閉集合の重心

    R^nの有界(閉)集合Bの重心は次の式を満たすgということでいいでしょうか?  ∫(x∈B)(x-g)dμ(R^n) このとき、Bが有界と言う条件からgの一意性が成り立つのでしょうか? また、f:B→Rの可測関数とするとfの重心を {(x,y)|x∈B,y∈f(B)}⊆R^(n+1)の重心として定義されるでしょうか?

  • 集合について

    1・次の集合A、Bに対し、A∪B、A∩B、B\Aを求めよ。 (1)A=[1,3]、B=(2,4)  ただし[1,3](2,4)は数直線上の区間を表す。 (2)A={x∈R|x^2=1}、B={x∈R|x^2-2x<0} 2・ A={1,2,3、…、n}の部分集合は全部でいくつあるか。 という上記の問題がわかりません。 1・は一応、解いたのですがあまり自信がありません。 (1)A∪B=[1、4)  A∩B=(2、3]  B\A=0 (2)A∪B=[-1,2)  A∩B={1}  B\A= わかりませんでした・・・。 解答、または訂正をお願いします。

  • 集合論の問題です。

    集合論の問題です。 同値関係が分かるようになりたいので、 よろしくお願いします。 R^2の関係~を以下で定義。 (x,y), (x',y')∈R^2に対して、 x-x'∈Z and y-y'∈Z なるとき、 (x,y)~(x',y')と表す。 この同値関係による同値類すべての集合をAと表し、 (x,y)∈R^2の同値類を[x,y]とあらわす。 a,b,c,d∈Zのとき、 f( [x,y] ) = [ax+by, cx+dy] ([x,y]∈A) によってf:A→Aが well-definedに定義できることを示せ。

  • 数学の、凸集合の問題を教えて下さい。

    次の6つの集合を、凸かどうか調べよという問題です。 図書館で本を調べたりしたのですが、定義とかだけで具体的な問題が載っておらずよく分かりません。 分かるやつだけでも全然構いません。お願いいたします。 (1)集合S={(x,y,z)∈R^3:x^2+y^2≦z} (2)集合S={(x,y)∈R^2:1≦x≦2,y=3} (3)集合S={(x,y,z)∈R^3:x+y≦3,x+y+z≦5,0≦x,y,z} (4)集合S={(x,y,z)∈R^3:x+y=3,x+y+z≦6} (5)集合S={(x,y,z)∈R^3:x^2+y^2+z^2≦4,x+y=1} (6)集合S={(x,y)∈R^2:x^3≦y,0≦x} お願いします