積分の変形について

このQ&Aのポイント
  • 質問文章における積分の変形の具体的な手順について詳しく説明してください。
  • 質問文章の中で行われている積分の変形について、どのように式変形されているのかを教えてください。
  • 質問文章における式変形の一部について詳しく解説してください。
回答を見る
  • ベストアンサー

積分の変形について

   ∫[0~π/4]x/(sin2x+2(cosx)^2) dx   =∫[0~π/4]x/(sin2x+cos2x+1) dx   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx    +(1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx …………(1)    +(1/2)∫[π/4~0](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) (-dt)    (t=π/4-xとおいた)   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx    +(1/2)∫[0~π/4](π/4-x)/(sin2x+cos2x+1) dx …………(2)   = (π/8)∫[0~π/4]1/(sin2x+cos2x+1) dx … (※)   = (π/8)[log(tanx+1)/2][0~π/4]   = πlog2/16 (1) から (2) の変形について教えてください。  t = π/4 - x とおけば   x = π/4-t   x = 0 → t = π/4, x = π/4 → t = 0.   dt = -dx なので (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx = -(1/2)∫[π/4~0](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) dt = (1/2)∫[0~π/4](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) dt まではわかるのですが、これを x に戻すのであれば   -(1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx になるのではないですか。  なぜ   (1/2)∫[0~π/4](π/4-x)/(sin2x+cos2x+1) dx と変形できるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

xに戻すのではありません (ほんとうに戻すのであれば符号もなにも変わりません) (なんのためにxからtへ置換したのか意味がありません) 変数名tは∫の次からdtまでの間だけに有効な局所変数なので a~z等どのような変数名にも置き換えることができるので tをxに置き換えるのです(t=x) (1/2)∫[0~π/4]x/(sin(2x)+cos(2x)+1)dx =(1/2)∫[0~π/4](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1)dt ↓sin(π/2-2t)=cos(2t) ↓cos(π/2-2t)=sin(2t)だから =(1/2)∫[0~π/4](π/4-t)/(cos(2t)+sin(2t)+1)dt ↓tをxに置き換えると =(1/2)∫[0~π/4](π/4-x)/(cos(2x)+sin(2x)+1)dx

musume12
質問者

お礼

懇切丁寧な回答まことにありがとうございました。

関連するQ&A

  • 数III 積分教えてください

    (1)∫tanx^3 dx tanx*tanx^2とし、1/cosx^2=tとして考えましたがうまくいきませんでした。 答え (1/2)tanx^2+log|cosx|+C (2)∫xcos3x dx f(x)=x,g´(x)=cos3x としましたがうまくいきませんでした。 答え (x/3)cos3x+(1/3)sin3x+C (3)∫dx/{√(x+1)+√x} 答え (2/3)√(x+1)^3-(2/3)√x^3+C 解き方を教えてください。 詳しいとありがたいです。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 不定積分

    ∫cos^2x/(1+sinx) dx という問題があるのですが模範解答は分子を1-sin^2と変形して 約分をし簡単な形に持っていく形式を取っています。私もこれは理解できます。 答え、x+cosx+C 私は違うやり方でやってみたのですが答えが合わずしかも納得がいかないという 悪循環になってしまいました。 下に私のやった方法を書くので間違いを指摘していただければと思います。 ∫cos^2x/(1+sinx) dx sinx=tとおくと cosxdx=dtだから与式は ∫cosx/(1+sinx) dt =∫t'/(1+t) dt =∫(t+1)'/(1+t) dt =log|t+1|+C =log(sin+1)+C お願いいたします

  • 式変形で分からないところがあります(積分)

    [ 問題 ] ∫(0→1) dx/√(x^2+1) [ 解答 ] x=tanθ とおく。 (与式)=∫(0→π/4) cosθ/(1-sinθ) dθ …(※) t=sinθとおく。 (※)=∫(0→1/√2) dt/1-t^2 =∫(0→1/√2) dt/(1+t)(1-t) =1/2∫(0→1/√2) {1/(1+t)+1/(1-t)}dt←ここから =1/2[log|1+t|-log|1-t|](0→1/√2)←ここまで … (答)…log(√2+1) という式変形なのですが、 「ここから~ここまで」のところで なにがおこっているかが よくわかりません(;_;) なぜlogの間がマイナスになってるのに 1-tのままなのか… なんかそこがポイントらしくて 赤で書かれています… おねがいします…(;_;)!!

  • 積分の計算

    ∫1/√(x^2+1)dxをもとめよ。 x=tanθとおくと、dx=dθ/cos^2θ 与式=∫(dθ/cosθ)=∫cosθ/(1-sin^2θ)dθ sinθ=tとおくと、cosθdθ=dtより、 与式=∫dt/(1-t^2) =1/2((1/1-t)+(1/1+t))dt =1/2(-logI1-tI+logI1+tI)+C(絶対値) =1/2log{(1+t)/(1-t)}+C =1/2log{(1+sinθ)/(1-sinθ)}+C =1/2log{(1+sinθ)^2/cos^2θ}+C =log(1+sinθ/cosθ)+C とやって、tanθ=xを使って復元できなくなりました。 助けてください

  • 不定積分

    毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。

  • ∫1/sin^2xdx を求めよ。

    ∫1/sin^2xdx を求めよ。 次のようにやりましたが、どこが間違っているか分かりません。 ご指摘ください。 ∫1/sin^2xdx=∫{1/(1-cosx)(1+cosx)}dx =(1/2)*{∫1/(1-cosx)dx+)+∫1/(1+cosx)dx} =(1/4)*{∫1/sin^2(x/2)dx+∫1/cos^2(x/2)dx} x/2=tとおく。 =(1/2)*{∫1/sin^2tdt+∫1/cos^2tdt} =(1/2)*{∫1/sin^2xdx+∫1/cos^2xdx} よって、 (1/2)*∫1/sin^2xdx=(1/2)*∫1/cos^2xdx ∫1/sin^2xdx=∫1/cos^2xdx =tanx 正解は-1/tanxなので、どこで間違ったのでしょうか。 よろしくおねがいします。

  • ∫[0→π/4]log(tanx)dxの積分

    tanx=e^tとおいて dx/cos²x=e^tdt dx=(e^tcos²x)dt ={e^t/(1+tan²x)}dt =e^t/{1+e^(2t)}dt log(tanx)=log(e^t)=t として 積分範囲を-∞~0に変え ∫[-∞→0]te^t/{1+e^(2t)}dt としたのですがここからいきづまりました どのようにやるといいでしょうか

  • 積分のやり方について

    下記の3問で解き方、考え方を教えてください。 (1) x=cos 2t, y=3sin t をx軸のまわりに回転してできる回転面の   面積 (0≦t≦π/2) (解答は49/4π) S=2π∫(0~π/2) y √((dx/dt)^2+(dy/dt)^2) dx で√内の処理がわかりません。 (2)曲線 x=tan t, y=sin t + 1 とx,y軸と直線x=1とで囲まれた図形の面積 (0≦t≦π/4)  解答は√2 S=∫(0~π/4) (sin t + 1)(tan t)' =∫(0~π/4) sin t + 1/(cos t)^2 ここから先で(cos t)^2を 変形したりしましたが答えがあわずに つまずいてます。 (3)∫(x^2- 2x + 3)/(x - 2)^3 dx 解答は log|x - 2| - (2/x - 2) - (3/2(x - 2)^2) 部分分数分解でやりましたがうまくできません。

  • 数III 積分教えてください

    (1)∫log(x+1)/x^2 dx (2)∫2x^3*e^(x^2) dx (3)∫dx/(x-1)√(x+1) (4)∫tanx log(cosx^2)dx 式変形をどのようにしたらよいのかが分かりません。 教えてください。 解説が詳しいとありがたいです。