• ベストアンサー
  • すぐに回答を!

中学数学の問題教えて下さい。

2右の図のように,点Oを中心としABを直径 とする円周上に2点A, Bと異なる点Cをとり. 点OからACに垂線ODをひく。また.点Oを 中心としODを半径とする円と線分OAの交点 をEとする。 (1) AC=12cm, BC=4cmのとき. 2つの円で囲まれた色のついた部分( の面積を求めなさい。ただし.円周率はπとする。 の部分)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数196
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • pkweb
  • ベストアンサー率44% (158/354)

こんばんは もう一つヒント ⊿ABCと⊿AODは相似ですよね^^

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難うございます。

関連するQ&A

  • 数学の問題です。

    数学の問題です。 円Pと円Qは半径が等しい。 線分ABは点Aで円Pに接し、点Bで円Qに接している。 AB=6センチメートルで四角形PAQBの面積が24平方センチメートルのとき、円Pの円周は何センチメートルか。 ただし円周率はπとする。 よろしくお願いします。

  • 中学数学の図形の問い

    [1]線分ABを直径とする円Oがある。円の接線をATとする   円の周上にAC//ODなる2点C,Dをとる。   ABとCDの交点をEとする。   AB=4cm ∠DAT=36°のとき、   ∠ADCの大きさと線分OEの長さを求めなさい。 [2]点Oを中心とした円がある   A,B,C,Dは円Oの周上の点で⌒AC=⌒BD   また、弦ACと弦BDの交点をEとし、中心Oから、弦AC,弦BDに   それぞれ垂線OH,OKをひく   ∠HEK=130°のとき、∠OHKの大きさを求めなさい。 [3]全ての辺の長さが等しい正四角錘ABCDEがある。   各側面の三角形の重心をそれぞれP,Q,R,Sとし、   底面BCDEの対角線の交点をTとする。  (1)四角錘TPQRSの体積は、正四角錘ABCDEの体積に何倍になるか?  (2)AB=6cmのとき、点Pから正四角錘の表面にそって、     点Dまで行くときの最短の長さを求めなさい。 [4]ある点Aから円Oに接線を二本引き、接点をそれぞれB,Cとする。   円Oの円周上に点Dをとる。   点Dを通り、線分BCに平行な直線と接線AB,ACの交点を   それぞれE,Fとする。(AB<AE,AC<AF)   BC=3cm CD=4cm DB=2cmとする。  (1)FDとDEの長さの比を求めなさい  (2)ADとBCの交点をGとするとき、CGの長さを求めなさい いっぱいありますが、どうぞよろしくお願いします

  • 数学の問題です。

    図の様に点Oを中心とする円Oがあり、点Aから円Oの接線を引き、接点をBとする。 又直線AOと円Oの交点を点Aに近い方から、C Dとする。さらに円Oの半径は3, AC=2とする。 (3) 図のキについては、次の(0)~(3)の内から当てはまる物を一つ選べ。 (0)OA (1)OC  (2)OD (3)AO △ABC∽△キBであるから、 BD:BC  ク:1 BC=ケ√コ/サ

その他の回答 (1)

  • 回答No.1

ヒントだけ。 1.Oは、ABの中点です。 2.角ACBは、直径の円周角なので直角です。 3.大きい円の半径はAO、小さい円の半径はDOです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難うございます。

関連するQ&A

  • 円の性質

    円の問題で困っています。 「半径4センチの円Oと円O’が互いの円の中心を通るように重なっている。ABとODはそれぞれ円の直径で、BCは円O’の中心を通っている。また、ADとBCの交点をEとする。このとき△CDEの面積を求めよ」っていう問題です。 図がないとわかりにくいのですが、 点Aは二つの円の交点です。 点Aと円Oの中心を通る線分と円Oの交点を点Bになります。 また、円Oと円O’を通る線分と円O’との交点が点Dになります。 さらに、点Bと円O’の中心を通る線分と円O’との交点が点Cです。 出題対象者は中学三年生になります。宜しくおねがいします。

  • 数学の問題です。

    右の図の様に点Oを中心とする円Oがあり、点Aから円Oに接線を引き、接点をBとする。 又直線AOと円Oの交点を点Aに近い方からC、Dとする。さらに円Oの半径は3、AC=2とする。 (3)  下の図キについては、次の(0)~(3)のうちから当てはまるものを一つ選べ。 (0)OA (1)OC (2)OD  (3)AO △APC∽△キBであるから、 BD:BC ク:1 BC=ケ√コ/サ という問題です。宜しくお願いします。

  • 中3 図形数学

    図のような円があり、異なるA,B,Cは円周上の点である。線分AC上に、2点A,Cと異なる点Dをとる。また、2点B,Dを通る直線と円との交点のうち、点Bと異なる点をEとする。∠EDCC=60°であり図の太線でしめした2つの弧⌒ABと⌒CEの長さの和が3πcmであるとき、この円の半径は何cmですか?なおmπは円周率を表す。ですよろしくお願いします。 図が下手ですみません。

  • 線分ABは半径4cmの半円Oの直径である。点Cは弧AB上にあり、弧AC:弧CB=3:1である。この半円Oを、弦ACを折り目として折ったとき、弧ACが直径ABと交わる点をDとする。 (1)∠CABの大きさを求めよ。 弧AC:弧CB=3:1であるから、 ∠COB=180°÷4=45°ですよね。 よって、∠CAB=45°/2 だとおもいます。 (2)線分ADの長さを求めよ。 点Dの対称の点をD’とする。と考える。 点D’はABの垂直二等分線上にあると思います。(確信がないです。) そうすると△AOD'より AD=AD'=4√2となると思います。 (3)次の2つ線分AC、ADと弧CDで、囲まれた部分の面積を求めよ。ただし、円周率をπとする。 私の考えは点Cから線分ABに垂線を引き、交わった交点をEとする。 △CAEの面積からいらない部分を引くことを考えて行った。しかし、よくわからずに詰まっています。 すいませんが(2)、(3)の考え方、解説等をお願いします。

  • 数学の問題です。解き方を教えて下さい。

    BC=12、角A=60°の△ABCがある。点Bから辺ACへ垂線BDをひき、点Cから辺ABへ 垂線CEをひき、BDとCEの交点をFとし、BCの中点をMとして、次の問いにこたえよ。 (1)角EMDを求めよ。 (2)EDの長さを求めよ。 (3)4点A、E、F、Dは同一円周上にある。この円の半径を求めよ。 解き方を教えて下さい。よろしくお願いします。

  • 数学の問題 三角関数

    自分でも考えてみたのですが、 どうしても分からないので教えてくだされば嬉しいです^^: 点Oを中心とする半径rの円周上に、二点A,Bを∠AOB<π/2となるようにとり、θ=∠AOBとおく。 この円周上に点Cを、線分OCが線分ABと交わるようにとり、線分AB上に点Dをとる。また、点Pは線分OA上を、点Qは線分OB上を、それぞれ動くとする。 (1)CP+PQ+QCの最小値をrとθで表せ (2)a=ODとおく。DP+PQ+QDの最小値をaとθで表せ (3)さらに、点Dが線分AB上を動くときのDP+PQ+QDの最小値をrとθで表せ 余弦定理で解けるかと思ったら、まったく解けませんでした・・・ もういっそすがすがしいほど分かりません。 方針すらも立てられません(涙 どなたか数学の得意な方、よろしくお願い致しますm(u u)m

  • 内積の最大最小です

    点Pが点A(1,2)を中心とする半径1の円周上を動くときの内積OA・OPの最大値と最小値を求めよ。という問題なのですが、最大となる点PはOAの延長線と円との交点であるとわかったのですが、最小となる点PもOAと円とのもうひとつの交点でいいのでしょうか。

  • 数学の問題わかるかた!

    平面上の2点O、AはOA≠2を満たす定点である。点Bは、中心がOで半径2の円周上を動くとする。線分ABを2:1に内分する点をMとするとき、点Mはどのような図形上を動くか。ベクトルを用いて求めよ。 解法おねがいします。

  • 数学の問題です

    4点O A B Cを頂点とする一辺の長さが8cmの正四面体がある。辺BCの中点をMとし、辺OA上にOD=MDとなるように点Dをとる。この時、1)線分OMの長さは? △OAMの面積は? 点Dから線分AMにひいた垂線とAMとの交点をHと するとき、DHの長さは?

  • 至急! 数学の問題

    至急!中学数学の問題です: 全く分らないので詳しく解説してください 図は点Pで外接する2つの円O,O'において、点Pにおける共通な接線m、nと交わる点をそれぞれA、Bとしたものである。円O,O'の半径がそれぞれ9cm、4cmの時、線分ABの長さを求めなさい 答えは12cmです*なぜ12か全くわかりません;

専門家に質問してみよう