• 締切済み
  • 暇なときにでも

導関数の求めかたについて

関数f(x)の導関数の求め方についてですが、 分子をf(x+h)-f(x)  分母をhとして、hを限りなく0に近づける。 計算の途中でhで除算する。これはhが限りなく0に近いが0ではないので成立する。 式の最終行の一つ前でhだけの項は0に等しいとしてhは消去する。 最終行はhを含まない式になる。 計算の途中と最後でhの扱いが違うのが理解できません。イコールではなくニアイコールなら理解できるのですが。 高校の教科書のレベル内で説明してもらえれば嬉しいです。・・・・・

共感・応援の気持ちを伝えよう!

  • 回答数6
  • 閲覧数233
  • ありがとう数7

みんなの回答

  • 回答No.6

>hは0に近づくから結局云々の説明ですが、0ではない項を消去して、なぜイコールが成立するのですか? >0に限りなく近い数値は、計算途中の都合しだいで、0にしたり、しなかったりしても良いということでしょうか。 「極限」の定義は,「h が 0 とは異なる値を取りつつ 0 に限りなく近づける」ことを意味し、h を 0 に近づけるだけであって,h = 0 を代入してよいとは限らない。 対象の関数が「連続」であれば、h = 0 と代入してよい。 前出の参考 URL では、  ・代入する  ・約分してから代入する(そのまま代入すると分母が0の不定形になる場合) の二つのケースを例示してますネ。   

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なんどももありがとうございます   約分してから代入する 約分のときはhノットイコール0 代入のときはh=0でよいのはどうしてですか。 他の方の回答にありましたが、高校の範囲では証明できないそうです 自分は、大学進学の予定はないので、大学に行かないバカやビンボー人は丸暗記するに限る、ということで納得しました。でも、数学のテストは結構いい点数をとっているんですよ(全国レベルに換算しても)。でも、理解してないのに点数だけ高くてもなぁ・・・・という思いで質問を重ねました。 ありがとうございました。

関連するQ&A

  • 導関数の問題です

    解析学を習い始めたばかりの初心者です。 以下の問題の答え(できれば途中の計算も)を教えていただけないでしょうか? 次の導関数を求めよ。 (1) f(x)=(2x+1)^3 (2) g(x)=1/(x^2+x+1) わかる方教えてください。m(_ _)m

  • 導関数の問題

    y=√{(1-√x)/(1+√x)}の1次導関数と2次導関数を求めよ。 という問題ですが、1次導関数を解いたところ y=√{(1-√x)/(1+√x)}=(1-√x)^1/2*(1+√x)^-1/2として、 y'=-1/4√(x-x^2) -√(1-√x)/{4√(x+x√x)}*1/(1+√x) になりましたが答えはあっているのでしょうか?

  • 公式より導関数を求める

    lim h→0 f(a+h)-f(a)/h の公式より導関数を求めたいと思いますが 計算手順がわからないので、教えてください。宜しくお願いします。 普通に微分したほうが早いのですけど、式を定義にして解こうとすると分かりません。宜しくお願いします。 【問題】 y=1/ x^2 の導関数を求めよ。 

  • 回答No.5

ANo.3 へ。 >参考 URL の「整式の導関数」の証明なら、どの箇所に疑問があるのでしょうか?   ↓ >4行目と5行目です。5行目でhが掛かっている項とhだけの項が消えているのが分かりません。イコールならhは0ではないのにhが掛かっている項とhだけの項が消えるのはおかしい。 >hが掛かっている項とhだけの項が消えるならニアイコールではないのですか?   ↓ 参考 URL   

参考URL:
http://wonder-trend.com/archives/4291.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

重ねての回答、恐縮です。 hは0に近づくから結局云々の説明ですが、 0ではない項を消去して、なぜイコールが成立するのですか? 0に限りなく近い数値は、計算途中の都合しだいで、0にしたり、しなかったりしても良いということでしょうか。

  • 回答No.4

高校の教科書のレベル内では説明不可能です。 大学では「hを限りなく0に近づける」等という非論理的な言葉は使いません ただし 「式の最終行の一つ前でhだけの項は0に等しいとしてhは消去する」 は誤りで あくまでhは0に近づけるのであって決して最後まで0に等しくならない lim_{h→0}{f(x+h)-f(x)}/h=f'(x) と書いたとき {f(x+h)-f(x)}/hはf'(x)に限りなく近づくのであって 決して最後まで等しくなる必要はない という事はいえます。 任意の正の実数ε>0に対して ある正の実数δ>0が存在して 0<|h|<δとなる任意の数hに対して |{f(x+h)-f(x)}/h-f'(x)|<ε となる時 lim_{h→0}{f(x+h)-f(x)}/h=f'(x) と書いて f'(x)をf(x)の導関数という。 f(x)=2x^3 の導関数を求める h≠0とすると {f(x+h)-f(x)}/h ={2(x+h)^3-2x^3}/h =2(x^3+3x^2+3xh^2+h^3-x^3)/h =2(3x^2+3xh+h^2) =6x^2+2h(3x+h) ↓ |[{f(x+h)-f(x)}/h]-6x^2|=2|h(3x+h)| ここで 0<|h|<δ→2|h(3x+h)|<ε となるようなδを求める 0<|h|<δの時 |3x+h|≦3|x|+|h|<3|x|+δ 2|h(3x+h)|<2δ(3|x|+δ) だから 2δ(3|x|+δ)≦ε となるようなδをみつければよい δ=min(1,ε/{2(3|x|+1)}) とすると δ≦ε/{2(3|x|+1)} δ≦1 2(3|x|+δ)≦2(3|x|+1) 2δ(3|x|+δ)≦2δ(3|x|+1)≦ε 2δ(3|x|+δ)≦ε だから 0<|h|<δの時 2|h(3x+h)|<2δ(3|x|+δ)≦ε f(x)=2x^3 の時 任意の正の実数ε>0に対して δ=min(1,ε/{2(3|x|+1)}) とすると 0<|h|<δとなる任意の数hに対して |{f(x+h)-f(x)}/h-6x^2|=|2h(3x+h)|<2δ(3|x|+δ)≦ε となるから lim_{h→0}{f(x+h)-f(x)}/h=f'(x)=6x^2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

理解することは諦めました 日常会話の「無限」と数学用語の「無限」の違いがわからないのだと思います

  • 回答No.3

ご質問の「意味」が把握できません。 参考 URL の「整式の導関数」の証明なら、どの箇所に疑問があるのでしょうか?   

参考URL:
https://math.nakaken88.com/textbook/basic-derivative-function-of-polynomial/

共感・感謝の気持ちを伝えよう!

質問者からのお礼

4行目と5行目です。5行目でhが掛かっている項とhだけの項が消えているのが分かりません。イコールならhは0ではないのにhが掛かっている項とhだけの項が消えるのはおかしい。hが掛かっている項とhだけの項が消えるならニアイコールではないのですか?

  • 回答No.2

 途中の計算で「計算の途中でhで除算する。これはhが限りなく0に近いが0ではないので成立する」は,正にその通りです。 そして導関数は,lim(f(x+h)-f(x))/h は限りなく近づいてゆく先の「的(まと)」を求めるので,h=0 の時の値がその「的」だと解釈することで納得してできませんか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

たぶん「的」はよい比喩なのでしょう 自分には理解できません

  • 回答No.1
  • f272
  • ベストアンサー率45% (5567/12163)

1.分子をf(x+h)-f(x)  分母をhとして、hを限りなく0に近づける。 2.計算の途中でhで除算する。これはhが限りなく0に近いが0ではないので成立する。 3.式の最終行の一つ前でhだけの項は0に等しいとしてhは消去する。 4.最終行はhを含まない式になる。 このうち1.2.4.はそれでOKですが,3.は違います。hが0に等しいとするのではなく,hを限りなく0に近づけてその極限の値にするのです。 f(x)=sin(x)であれば lim((f(x+h)-f(x))/h) =lim((sin(x+h)-sin(x))/h) =lim(2sin(h/2)cos(x+h/2))/h) =lim(sin(h/2)/(h/2)*cos(x+h/2)) =lim(sin(h/2)/(h/2))*lim(cos(x+h/2)) =cos(x)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

sinやcosのhの消し方は詐欺的ですw 質問をさらに要約すれば X=sin(A) ただし  A→0 Y=sin(B) ただし B=0 教科書をどう読んでも、眺めても、AノットイコールBなのに、X=Yと書いてあって、これが理解できません

関連するQ&A

  • 導関数の求め方

    導関数の求め方については、高校で教えてもらい、その意義としては、ある点の接線の傾きだとういうことですよね。 でも、それはf(x)の場合ですよね。 もし、xではなくて、x^2になったとしたら、単純に2xが掛け算された導関数ということになるという理解でいいのでしょうか。 例えば、f(x)/g(x)の導関数は、微分の商の定理から、f'g-fg'/g^2になりますよね、ということは、f(x^2)/g(x^2)の導関数は、-2x(f'g-fg')/g(x^2)^2になるのではないかと思っています。 教えてください。よろしくお願いします。

  • 導関数の定義域について

    導関数の定義域について 例えば、すべての実数xで微分可能な関数f(x)において、x≧aとするとき、f'(x)の定義域はx≧aですか?それともx>aですか? 導関数の定義域はいつも開区間になっているような気がするんですが、その理由がいまいち理解していません。もとの関数では定義域に入っているが導関数では定義域に入っていないのは、導関数において分母を0にする数だから、絶対値記号の場合分けの分かれ目だから、という理由で合ってますか? もし合ってるとしたら、はじめに質問したf'(x)の定義域はx≧aとなりますよね? とても気になっています。 よろしくお願いします。

  • 導関数の問題です。

    問題】 f(x)={(√3)^(1/3)}^(x^2) (x>0)の導関数を求めよ。 全然分からないので どなたかよろしくお願いします。 ('▽'*)ニパッ♪

  • f:R^n→R^mの導関数の定義式は?

    n=m=1の時なら lim[h→0]|f(x+h)-f(x)|/|h| が導関数の定義ですがf:R^n→R^mの場合には導関数の定義式はどのように書けるのでしょうか? n Σ(lim[hi→0]|f(x1,x2,…,xi+hi,…,xn)-f(x1,x2,…,xn)|/|hi|) i=1 では間違いでしょうか?

  • 微分係数、導関数(数学II)

    f(x)=2の導関数は0です。 f(x)=yとすると、y=2はx軸に平行な直線となるので、傾きを表す導関数が0になるというのは肯けます。 しかし納得できない点があります、 f(x)=2の導関数を導関数の定義に従って求めると f´(x)=lim[h→0]2-2/h=0―(1) となります。 また、f(x)=x^3の導関数は f´(x)=lim[h→0](3x^2+3xh+h^2)―(2) =3x^2 となります。 (2)はhが0の時に3x^2になるということを示していますよね? じゃあ(1)はどうなるのでしょう。分母がhになっていますが・・・。 もしや私の考えていることは前提が間違っていて、(2)の場合、hが0に近づけば、f´(x)が3x^2に近づくといった方が正しいのでしょうか? でもそれならイコールで結ぶことはできないはずですよね。 「3x^2であること」(3x^2)と「3x^2に限りなく近いということ」(lim[h→0](3x^2+3xh+h^2))は別だと思うのです。 そして仮にそうだとしても(1)に納得する理由にはならない気もします。 hが0に近づくといいますが、0になってしまったら式が成り立たなくなってしまいますよね。 2-2/hという式は、hが0以外のときに成り立つと思うんです。 質問をまとめると、 その1 f(x)=2の導関数、つまり f´(x)=lim[h→0]2-2/h=0 ←この場合、hが0に近づくというのはどういうことなのでしょう? その2 f(x)=x^3の導関数、つまり lim[h→0](3x^2+3xh+h^2)=3x^2←この両辺は等しいと言えるのでしょうか? 定義の理解も曖昧ですみません・・・。 よろしくお願いします!

  • 第5次導関数の問題です

    この解き方であっているか、わかる方よろしくお願いします。 関数f(x)=x^5+2mp第5次導関数f^(5)(x)を求めよ。 (f^(5)(x)の(5)の部分だけが指数です。) 答え 1次導関数:5x^4 2次導関数:20x^3 3次導関数:60x^2 4次導関数:120x 5次導関数:120 よって、f^(5)(x)=120

  • 導関数の問題で...

    sinxの導関数がsin(x+π/2)であることを使って、 sinxcosx^3のn次導関数を求めたいのですが、途中で行き詰まってしまいました。 cosx^3を次数下げしていって 与式=1/4(sin2x+1/2・sin4x) としたのですが、このあとどうしたら良いのでしょうか? 分かる方教えて下さい!

  • 導関数の計算

    f(x)=x-1(マイナス一乗の意)の導関数を定義に従って求める問題なんですが、どうしてよいかわかりません(計算の仕方)。 どなたか教えて下さい。

  • 導関数の問題

    以下のような問題を解いてみましたが、自信がありません。 この解き方でいいのでしょうか? もし、おかしい点があればご指導おねがいします。 【問題】 関数 f(x)=∫{0→x}(t^2+1)^10 dt の導関数を求めよ。 【自分の解答】 一般的に、関数g(x)の原始関数をG(x)とした場合、 f(x)=∫{a→x}{g(t)} dt =[G(x)]{a→x}=G(x)-G(a) f(x)=(dG/dx)=g(x) とあらわすことができる。 ゆえに、関数 f(x)=∫{0→x}(t^2+1)^10 dt に t=xを代入し、導関数は f(x)=(t^2+1)^10 となる。

  • 定積分で表された関数の導関数の求め方について

    定積分で表された関数の導関数の求め方について、   f(x)=∫[0→x](t^ 2 + 1)^10 dt の導関数を求める場合 下記の方法、回答で合っているかご教授頂けますか。    まず、f(x)=∫[0→x](t^ 2 + 1)^10 dt         =[1 / 11 (t^2 + 1)]^11(0→x)        =1 / 11 (x^2 + 1)^11 ゆえに、導関数は    f´(x)=(x^2 + 1)^10 合っていますでしょうか? よろしくお願いします。