途中計算の要約

このQ&Aのポイント
  • 途中計算の要約
  • 要約文その2
  • 要約文その3
回答を見る
  • ベストアンサー

文章問題の途中計算

途中計算がわかりません。関係あるかもしれないので念のため全文載せておきます。英文ですがわかる方、宜しくお願い致します。 問題 A beam is to go from the ground over a low wall, height h, to reach a tall wall in order to brace the tall wall. The distance from the low wall to the tall wall is d. Find the length of beam L in terms of the angle Θ , d and h and hence find tan Θ in terms of d and h for the shortest possible beam length that will brae the wall. You may assume that any solution is a minimum. 解答 L=h cosec Θ +d sec Θ  これはわかります。 L’= -h cosec Θ cot Θ +d sec Θ tan Θ  わかります。 L’ = 0 わかります。 h/(sin Θ tan Θ ) = (d tan Θ) / cos Θ    わかります。 tan Θ = 3 √(h/d)  ここが分かりません。 (小さい3です。(h/d) ^(1/3) という事です。) h/(sin Θ tan Θ ) = (d tan Θ) / cos Θ  → tan Θ = 3 √(h/d)  の計算の仕方を教えて頂けますか?

質問者が選んだベストアンサー

  • ベストアンサー
noname#232123
noname#232123
回答No.1

sinθ=s, cosθ=c と略記することにします。 (与式) ⇔ h/(s^2/c)=h*c/s^2 ⇔ h/d=s^3/c^3=(tanθ)^3. よって、tanθ=(h/d)^(1/3) となります。

machikono
質問者

お礼

ご回答有り難うございます。 (与式) ⇔ h/(s^2/c)=h*c/s^2  わかります h*c/s^2 ⇔ h/d=s^3/c^3  わかりません s^3/c^3=(tanθ)^3   わかります よって、tanθ=(h/d)^(1/3)  わかります。 お時間あれば h*c/s^2 ⇔ h/d=s^3/c^3  の流れを教えて頂けますか?

その他の回答 (1)

回答No.2

h/(sinθtanθ) = (dtanθ)/cosθ 両辺にsinθtanθ(≠0)をかけると h = (dsinθtan^2θ)/cosθ sinθ/cosθ = tanθなので、 h = dtan^3θ あとはわかりますね。

machikono
質問者

お礼

わかりました、こんな風に考えるのですね。 すみません、一番最初に答えて下さった方にベストアンサーを差し上げるべきだと思うのでそうしますが二分出来ないのが残念です。 本当に助かりました、有り難うございました。

関連するQ&A

  • 途中計算が理解出来ません

    次の問題の (b)のvariance (分散値?)を答えるところがわかりません。 英文で申し訳ないですが全問題文を載せます。 (問題) The length, L(in cm), of the boxes produced by a machine is a random variable with mean 26 and variance 4 and the width, B(in cm), is a random variable with mean 14 and variance1. The variables L and B are independent. What are the expected value and variance of a) the perimeter of the boxes, b) the difference between the length and the width? (答えと解説)  画像に載せました (質問) ☆印をしたところがわかりません。 これはVar(L-B) なので(4-1)で 3になると思っていました。 丸で囲んだ1^2、(-1)^2 がわかりません。この1とー1はどこから来たんですか? そしてVar(L-B) なのに何故足し算になっているのですか?

  • 積分文章問題

    問題 ー英文ですみません A prototype aeroplane engine is being tested. For the first 10 seconds after being started, the rate at which it uses fuel (Ls^-1)can be modelled by (1/50) e^(3t) - sec(t)tan(t), where t is measured in seconds. How much fuel does the engine use in the 3rd second after being started? 解答は手元にありません。 自分で解いてみたのですがかなり自信がありません。  ∫ (1/50) e^(3t) - sec(t)tan(t) dt [e^(3t) ] / 150 - sec(t) e^9 / 150 - 1/cos 3 = 55.03L ..となったのですが、確認お願い出来ますか? 宜しくお願い致します

  • この文章の和訳を教えてください。

    In the preceding papar (Nakazawa et al., 1989a,referred to as Papar I), we have proposed that a framework of Hill’s equations (Hill, 1878) is of great advantages to find precisely the collisional rate between Keplerian particles over wide ranges of initial conditions. First, in Hill’s equations, the relative motion separates from the barycenter motion, and the equation of the barycenter motion can be integrated analytically (see also Henon and petit, 1986). Second, the equation of motion can be scaled by h and Ω; h is the reduced Hill radius and Ω is the Keplerian angular velocity. They are given by h=(m_p/3M_?)^(1/3) (4) and Ω={G(M_?+m_p)/a_0*^3}^(1/2), (5) Where a_0* is the reference heliocentric distance (which is usually taken to be equal to the semimajor axis of the protoplanet) and M_? is the solar mass. The first characteristic of Hill’s equations permits us to reduce the degree of freedom of particle motion and, hence, to reduce greatly the number of orbits to be pursued numerically. The second permits us to apply the result of an orbital calculation with particular m_p and a_0* to orbital motion with other arbitrary mass and heliocentric distance. 長文になりますが、どうかよろしくお願いします。

  • 微分文章問題 (英文)

    問題 Water leaks from the bottom of a tank at a rate proportional to the depth h of the water in the tank. Write down an equation describing this if V is the volume of the water in the tank after time t and if the tank is a cylinder show that dh/dt is proportional to h. 答えはdh/dt の式を出せばいいと理解しているので dh/dt = (dh/dv) x (dv/dt) にしたらいいと思うのですが、 シリンダーの体積は v = Π r^2 h , dv/dh = Π r^2 となりdh/dvは出せるのですが dv/dt をどう出せばいいのかわかりません。 t を入れた v= の式が考えつきません。 教えて頂けますか?

  • sec ( ½Π– x ), sec (- x)

    Simplify the following. という問題です。 a) sec ( ½Π – x ) b) sec ( - x ) 答え a) cosec x b) sec x どこから手を付けていいのかわかりません。 例えばa) は 答えがcosec xなので=1/sinx などと関連して考えてみたりもしましたがわかりません。 この問題の前ページに1+tan^2θ=sec^2θ や 1+cot^2=cosec^2θ などがあるのですが それは関係あるのでしょうか? 解き方を教えてくれませんか?

  • この文章の和訳をお願いします。

    1. Introduction This is the third of a series of papers in which we have investigated the collisional probability between a protoplanet and a planetesimal, taking fully into account the effect of solar gravity. Until now, the collisional probability between Keplerian particles has not been well understood, despite of its importance, in the study of planetary formation and, as an expedient manner, the two-body (i.e., free space) approximation has been adopted. In the two-body approximation, the collisional rate is given by (e.g., Safronov,1969) σv=πr_p^2(1+(2Gm_p/r_pv^2))v, (1) where r_p and m_p are the sum of radii and the masses of the protoplanet and a colliding planetesimal, respectively. Furthermore, v is the relative velocity at infinity and usually taken to be equal to a mean random velocity of planetesimals, i.e., v=(<e_2*^2>+<i_2*^2>)^(1/2)v_K, (2) where <e_2*^2> and <i_2*^2> are the mean squares of heliocentric eccentricity and inclination of a swarm of planetesimals and v_K is the Keplerian velocity; in the planer problem (i.e., <i_2*^2>=0), the collisional rate is given, instead of Eq.(1), by (σ_2D)v=2r_p(1+(2Gm_p/r_pv^2))^(1/2)v. (3) Equations (1) and (3) will be referred to in later sections, to clarify the effect of solar gravity on the collisional rate. よろしくお願いします。

  • 前置詞の問題

    次の前置詞の問題、お分かりになる方がいらっしゃったら、どうか教えてください。お願いします。 Fill each blank with a suitable prepposition. The simple infinitive (a) 'to' is still used, chiefly (b) auxiliary verbs, as (c) 'He will come," (d) "He is going to come.' We are so accustomed to thinking of 'to' (e) a part of the infinitive taht a prejudice has grown up (f) separating 'to' (g) the verb. There is no historical reason why 'to' should immediately precede the infinitive (h) which it is a sign, though it is naturally desireble that the two words should not be very far apart. Although in Old English the infinitive was a noun. (i) course of time it has come to have some of the properties of a verb. The Old English infinitive could be used (j) either an active or a passive sense, and the active infinitive with passive meaning is found today in sentences such as 'I am to blame' and 'This house is to let.' 私は以下のように考えるのですが・・・・  a. of b. with c. ? d. ? e. as f. in g. from h. in i. in j. in こんなにinが多すぎるわけはないと思うのです。 英文法に詳しい方、よろしくおねがいします。

  • ちょっと長い文章問題 問題英語です

    A city's water consumption between the hours of 6 pm to 8 pm is periodic with a period determined by the 15 tv minute advert breaks. The consumption peaked at 6.07pm at 45,000L/minute and had a minimum of 27,000L/minute at 6:14.5 pm. a)Form an equaton based on minutes since 6pm to model the water consumption b)Find the water consumption at 8 pm. c) many minutes between 6pm and 8pm is the water consumption under 30 000 litres? 答え a)w=consumption in 000L/min, w=9sin [2π/15(t-3.25) ] + 36 b)w = 27200 liters / minute c)time = 8x4 = 32 minutes 質問   a)私はまずグラフを書きました。グラフを見ながらこの手の問題を解くformula(公式?)があるのでそれのお陰で解けました。 b) 9sin [2π/15(120-3.25) ] + 36 =27.19667159 この考え方で合っているでしょうか? c) これがよくわかりません。9sin [2π/15(t-3.25) ] + 36 =3000 で時間を割り出し計算したりしましたが32にはなりません。 答えの8x4という式も理解出来ません。 お時間あれば宜しくお願い致します。

  • pHの問題

    アメリカのコミカレ生です。 誰か、とき方を教えていただけないでしょうか。 Challenge Problem 1 A chemist needs to prepare a buffer solution with pH=9.99 and has both Na2CO3 and NaHCO3 in pure crystalline form. What mass of each should be dissolved in 1.00 L of solution if the combined mass of the two salts is to be 40. g?

  • この文章はどのように訳すのでしょうか?

    この文章はどのように訳すのでしょうか? Resource management as a whole In studying agrodiversity, it is also necessary to take account of diversity in resource management as a whole. The small farm regions of the tropical world contain a high degree of biodiversity, sometimes greater in species numbers than the wild land itself. Only a portion of this biodiversity is directly manipulated for production, although a much higher proportion provides services of various kinds to the farmers. It provides food and economically valuable fruits, nuts, and leaves, restores soil fertility, yield wood and raw materials for artisanal production, offers a range of medicines, shelters wildlife that can be hunted, and so on. Whether or not agroforests are part of the system, the farm does not end where the field meets the wood. We need to look at the continuum between the two and examine the manner in which the managed and unmanaged wild elements relate to the cultivated land and plants. Inclusion of managed and unmanaged wild elements in the content of agridiversity or agrobiodiversity is contrary to the view of some modern students of agricultural biodiversity. Wood and Lenne(1992a:2) excluded “wild plants and animals of food value outside the agroecosystem“ from the domain of agrobiodiversity because they are of small importance on the global level. On the local level, they can be of major importance. Chapter 4 introduces the integral significance of the wild populations historically. The topic is taken further in chapter 6, and chapter 8 develops the close relationship between farm and forest in depth. Food and useful plant sources beyond the field are indeed part of the farm. 分からず、困っております 本の中の途中の文章ですが、よろしくおねがいします!