ブラウン運動の定義と結合分布に関する質問

このQ&Aのポイント
  • 質問の内容は、ブラウン運動の定義と結合分布についてです。
  • 質問者は、ブラウン運動の定義から導かれる性質について学んでいます。
  • 特に、変数変換を用いた式の導出について疑問を持っています。
回答を見る
  • ベストアンサー

ブラウン運動の定義と結合分布

http://www.math.u-ryukyu.ac.jp/~sugiura/2010/sde10.pdf に書かれていること(主に4page後半から5pageの頭)に関しての質問なんですが, 確率空間(Ω,F,P)上定義された(実数値)確率過程 B={B_t ; t≧0} がブラウン運動であることの定義から 定義(もしくは定義から導ける):「0=t_0<t_1<t_2<…<t_n に対し, {B_(t_i)-B_(t_(i-1))}_{1≦i≦n} は独立」なので A1,…An をボレル集合とすれば P( B_(t_1)-B_(t_0)∈A1,…,B_(t_n)-B(t_(n-1))∈An ) =P( B_(t_1)-B_(t_0)∈A1 )…( B_(t_n)-B(t_(n-1))∈An ) さらに「定義: 0≦s<t に対し, B_t-B_s は平均 0,分散 t-s のGauss分布に従う」 から P( B_(t_1)-B_(t_0)∈A1,…,B_(t_n)-B(t_(n-1))∈An ) =∫_A1…∫_An Πp(t_i-t_(i-1),x_i) dx_1…dx_n Πは i=1からnにわたる積 p(t,x)=1/√(2πt)*exp(-x^2/(2t)) を得る.ここから y_0=0, x_i=y_i-y_(i-1) (i=1,…,n) という変数変換によって P( B_(t_1)-B_(t_0)∈A1,…,B_(t_n)-B(t_(n-1))∈An ) =∫_{y_1∈A1}…∫_{y_n-y_(n-1)∈An} Πp(t_i-t_(i-1),y_i-y_(i-1)) dy_1…dy_n と書き換える. ここまでは理解できるのですが,ここからいきなり P( B_(t_1)∈A1,…,B_(t_n)∈An ) =∫_{y_1∈A1}…∫_{y_n∈An} Πp(t_i-t_(i-1),y_i-y_(i-1)) dy_1…dy_n が得られることがわかりません.どういう過程を経てこの式を得たのでしょうか? 教えてください.よろしくお願いします.

質問者が選んだベストアンサー

  • ベストアンサー
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

密度で考えれば分かりやすいかも。次の [1] から [2] を導きたいのですね? [1]  任意のボレル集合 A1, …, An に対し P( B_(t_1)-B_(t_0)∈A1,…,B_(t_n)-B(t_(n-1))∈An ) =∫_A1…∫_An Πp(t_i-t_(i-1),x_i) dx_1…dx_n [2]  任意のボレル集合 A1, …, An に対し P( B_(t_1)∈A1,…,B_(t_n)∈An ) =∫_{y_1∈A1}…∫_{y_n∈An} Πp(t_i-t_(i-1),y_i-y_(i-1)) dy_1…dy_n 次の通り。 (問題の言い換え) i = 0, …, n に対し、Y_i = B_(t_i) と置く。i = 1, …, n に対し、X_i = Y_i – Y_(i-1) 、 q_i(w) = p(t_i – t_(i-1), w)と置く( w は実数)。 n 次元確率ベクトル X と Y を、 X = (X_1,…, X_n) 、 Y = (Y_1,…, Y_n) と置く。すると、 [1] は、次の [3] と同値であり、 [2] は、 [4] と同値である。 [3]  X は、密度を持つ。それを f(x_1, …, x_n) とすると、   f(x_1, …, x_n) = Πq_i(x_i) [4]  Y は、密度を持つ。それを g(y_1, …, y_n) とすると、   g(y_1, …, y_n) = Πq_i(y_i – y_(i-1)) (積分変数変換公式の適用) 一般に、 X を、密度 f(x) を持つ n 次元確率ベクトルとし、Φを、 R^n から R^n への連続的微分可能全単射とすると、 Y = Φ(X) は、次の g(y) を密度に持つ。   g(y) = |det(J)|f(Φ^(-1)(y)) ただし、 x = (x_1, …, x_n) 、 y = (y_1, …, y_n) とする。また、 J は、Φの関数行列(「ヤコビ行列」ともいう)で、 det(J) は、その行列式である。これは、普通の積分変数変換公式を確率ベクトルに適用しただけである。 (結論) 今回の場合、 J = 1 (添付図参照)、Φ^(-1)(y) = (y_1 – y_0, …, y_n – y_(n-1)) だから、 [3] から [4] が導かれる。

関連するQ&A

  • 線形微分方程式の定義

    線形微分方程式の定義というのは、以下のもので認識しているのですが、 これであっているのでしょうか? (検索しても、とくに「定義」として書かれているものは少なく、 自分の「定義」の認識が違っていると大変なので…。) n階の微分方程式が P0(x) d^ny/dx^n + P1(x) d~n-1y/dx^n-1 + … + Pn-1(x)dy/dx +Pn(x)y = Q(x) のかたちをしているとき、これを線形微分方程式という。

  • 6重積分の発散のオーダーの問題です。

    S_n =∫_{-∞→∞}dx1∫_{-∞→∞}dx2∫_{-∞→∞}dx3∫_{-∞→∞}dy1∫_{-∞→∞}dy2∫_{-∞→∞}dy3 H(x,y) ただし x とyは3次元ベクトルで x=(x1, x2, x3), y=(y1, y2, y3), H(x,y)=Σ_{i=1, 2, 3}H_i(x,y). H_i(x, y)={I_[a, n](|x|) I_[a, n](|y|)}/{f(x)f(y)}(xi/E(x)^2+yi/E(y)^2)(1/E(x)+1/E(y)){1/G(x,y)}, ただし|x|=√(x1^2+x2^2+x3^2), I_[a, n](|x|)は定義関数で、 a≦|x|≦nのとき I_[a, n](|x|)=1, それ以外のとき I_[a, n](|x|)=0となる関数である。(a>0, n>0) また、f(x)=√(|x|^2+c^2), c>0, E(x)=|x|^2/(2m)+f(x), m>0, G(x,y)={|x|^2+|y|^2+2(x1y1+x2y2+x3y3)}/(2m)+f(x)+f(y)であるとする。 n→∞のときのS_nの発散のオーダーを求めてください。よろしくお願いします。

  • 緩増加超関数について

    定義 Tが緩増加超関数であるとは、 1.TはS上の線形写像、ただしSは急減少関数全体とします 2.Tは連続、i.e.任意のφ,φn∈Sに対してφn→φならT(φn)→T(φ) 2の定義中にあるφn→φ(n→∞)の意味なんですが これはSにある位相をいれてあってその位相に関して収束するという意味です ここではその位相の紹介は省きます またT(φ)のことを<T,φ>と書きます 例 δ関数を次のように定義するとδ関数は緩増加超関数です <δ,φ>=φ(0)、φ∈S 証明は定義の1,2を確かめればいいので省きます ここからが本題なのですが このデルタ関数が積分の中にでてくるのをよく見ます たとえば ∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・δ(z-x/y) などです。 このδ関数はz-x/yに作用しているのですが これは上の定義のようなS上の関数にはなっていません あたかも普通の関数のように扱われています しかし、普通の関数としたら (今pは連続分布という仮定があります) この測度0上で値をとる関数なのでこの積分は0になるはずです ではどうしてこのように混同して書かれているのでしょうか? ぜひ教えてください

  • 定義の微分

    f(x)=x^2+1を定義に従い微分せよ y=3x^2とかは dy/dx=3×2xとするように言われたんです。 つまりdy/dxと置けという事です。 でもf(x)=x^2+1はdy/dxと置けないですよね? 普通にf`(x)=~から始めちゃダメなんですかね。 でも、y=3x^2とかは y`(x)で始めないでdy/dxで始めろって言われましたし

  • 有界変動についての真偽判定問題で教えて下さい

    下記の問題を解いています。 [問] f:[a,b]→R (a,b∈R,a<b)とする時,次の真偽を判定せよ。 (1) fが増加ならばfは有限変動である。 (2) fが増加ならf(x)=∫[x..a]f'(y)dy. (3) fが有界変動ならばfは2つの増加関数の差として表される。 (4) fが絶対連続ならばf(x)=∫[x..a]f'(y)dy. (5) fが有界変動ならばfはa.e.で微分可能 有界変動の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。 V((s,t],f)は(s,t]⊂[a,b]でのfの変動 ⇔ V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N} (但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割) そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。 V((a,b],f)<∞の時,単にfは有界変動であるという』 絶対連続の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。fが[a,b]で絶対連続 ⇔ 0<∀ε∈R,0<∃δ∈R; i≠jならばInt[a_i,b_i]∩Int[a_j,b_j]=φ(但し,Int[a_i,b_i]は[a_i,b_i]の内核を表す)でΣ(b_i-a_i)<δなる[a,b]の任意の部分区間の列{[a_i,b_i]} に対し Σ(f(b_i)-f(a_i))<ε』 です。 (1)については fが閉区間で単調なのでfは有界。従って,fは有界変動 (2)についてはf(x)=∫[x..a]f'(y)dyとはdf(x)/dx=f'(x)を満たす関数という事なのでそのような関数としてf(x)=∫[x..a]f'(y)dy+1とかも採れる。よってf(x)=∫[x..a]f'(y)dyとは限らないので偽。 (3)についてはJordanの分解定理「f:[a,b]→Rが有界変動. ⇔ ∃f_1とf_2とは増加関数でf=f1-f2」 より真。 (4)についても(2)と同様でf(x)=∫[x..a]f'(y)dy+1とかも採れる(∵f(x)=∫[x..a]f'(y)dy+1はf(x)=∫[x..a]f'(y)dyを平行移動しただけなので絶対連続性は保たれる)。よって偽。 (5)については測度としてルベーグ測度λが仮定してあるんだと思います。 fとしてディレクレ関数 f(x)=1 (xが有理数の時),0 (xが無理数の時) を考えるとλ([a,b]∩Q)=0,λ([a,b]∩(R\Q))≠0ですがfは[a,b]の至る所で不連続なので[a,b]の至る所で微分不可能なので 勿論,a.e.(即ち[a,b]∩(R\Q))ででも微分不可能。 よって偽。 と結論づいたのですが如何でしょうか?

  • ランダムウォークのマルコフ性の証明

    Y_1 , Y_2 , …, Y_n , … を、同分布でそれぞれ独立である確率変数列であるとし、 P(Y_i = 1) = p , P(Y_i = -1) = q (i=1,2,3,…) p + q = 1 , 0≦p,q≦1 とします。このとき、{S_n}を、 S_0 = 0 S_n = Σ[i=1~n] Y_i としたとき、{S_n}はランダムウォークと呼ばれる確率過程に成ります。 この確率過程{S_n}のマルコフ性、つまり、 P( S_n = x+1 | S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x ) = P( S_n = x+1 | S_{n-1} = x ) を示したいのですが、以下の証明法は正しいでしょうか?何だかあっさりし過ぎていて不安なのですが…。 P( S_n = x+1 | S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x ) = P( S_n = x+1 , S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x )/P( S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x ) = P( Y_n = 1 , S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x )/P( S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x ) = P( Y_n = 1 )P( S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x )/P( S_1 = s_1 , S_2 = s_2 , … , S_{n-1} = x ) = P(Y_n = 1) = p = P( S_n = x+1 | S_{n-1} = x ) 特に3個目の等号が成立するかどうかが不安です。 Y_nはS_1,S_2,…S_{n-1}と独立だから成立するのではないか、と思うのですが、独立という概念に対する理解がまだまだ甘いからなのか、何だか不安です。

  • yがxの関数でない時の微分の定義

    y=f(x)のときdy/dxの定義は, dy/dx=lim[Δx→0]{f(x+Δx)-f(x)}/Δx ですよね? これは,yがxの関数(一つのxに対してyが一つ)だから定義できます. では,yがxの関数でないとき(一つのxに対してyが二つ以上のとき),例えばx=y^2のとき,dy/dxの定義はどうなるんですか?

  • 積分の定義式を証明する問題ができません

    下記の証明問題についてです。 f(x)を[a,b]で単調増加とする。自然数nに対し,h=(b-a)/nとし,分割P(n)={x(0),x(1),…x(n)}をk=0,1,…,n, x(k)=a+kh、U(P(n),f(x))=Σ[i=1..n]M(i)・Δx(i) (M(i)=sup{f(x);x(i-1)≦x≦x(i)})とする時, (1) 0≦U(P(n),f(x))-∫[a to b]f(x)dx≦(b-a)(f(a)-f(b))/n が成立する事を示せ。 (2) ∫[a to b]f(x)dx=lim[n→∞]U(P(n),f(x)) という問題なのですがどうやって示せばいいのでしょうか?

  • 関数の積分を求めるプログラムで質問です。

    シンプソンの公式を用いて積分を求めるプログラムで、 「 y=1/(1+x*x) のように±∞で0に収束するような関数は以下のような無限積分を求めることができる。 ∫(-∞→∞){1/(1+x*x)}dx …(a) ただし、無限区間を分割することはできないので、コンピュータを用いた計算では ∫(-a→a){1/(1+x*x)}dx のaに大きな値を入れることで代用する。この積分を求めるプログラムをシンプソンの式を用いて作成し、以下の3ケースについて値を求めて真値と比較せよ。真値は式(a)を解析的に積分することで求めよ。 ・a=100、N=1000 ・a=100、N=500 ・a=200、N=1000 (Nは以下のプログラムと対応しているものです) 」 というもので参考としてS=∫(1→2){1/x}dxをシンプソンの公式を使い求めるものは以下のものなのですが #include <stdio.h> double f(double x) { return 1/x; } int main() { int i,N; double a,b,h,S; double x[1000],y[1000]; a=1.0; b=2.0; N=10; h=(b-a)/N; for(i=0;i<=N;i++) x[i]=a+i*h; y[0]=f(x[0]); y[N]=f(x[N]); S=h*(y[0]+y[N])/3.0; for(i=1;i<=N-1;i=i+2) { y[i]=f(x[i]); S=S+h*y[i]*4.0/3.0; } for(i=2;i<=N-2;i=i+2) { y[i]=f(x[i]); S=S+h*y[i]*2.0/3.0; } printf("N=%d,S=%15.10lf\n",N,S); } これを生かしてプリグラムをつくりたいのですが、分からなくて困っています。助けてください。

  • 広義重積分の問題

    Ω={ (x , y) | 0 ≦ x , 0≦ y , x + y < 1} とします。 Ω上で ∬ ( x / (1 - x - y)^(1/2)  ) dxdy を求めよ。 という問題です。 増加列として Ωn = { (x , y) | 0 ≦ x , 0≦ y , x + y ≦ 1 / n } をとり、Ωnで重積分したあとに n → 1 とすればよいと思ったのですが… 計算してみると添付画像のようになり、分母が0に近づくので発散してしまいます。 一応ここにも式で書いておきます。 積分範囲は 0 ≦ x ≦1/n , 0≦ y ≦-x + 1/n です。   ∬ ( x / (1 - x - y)^(1/2)  ) dxdy =∫x dx ∫ {1 / (1 - x - y)^(1/2) } dy =∫x [ (2/3) (1 - x - y )^(-3/2) ] dx =(2/3) (∫{ 1 / (1 - 1/n )^(3/2) } dx - ∫{ x / (1 - x )^(3/2) } dx ) = (1/3) ・(1 / (1 - 1/n )^(3/2) )・(1/n^2) - (2/3)∫{ x / (1 - x )^(3/2) } dx                            ( √(1-x) = t  と置く。 1≦t≦√(1-1/n) ) = (1/3) ・(1 / (1 - 1/n )^(3/2) )・(1/n^2) - (2/3)∫((1-t^2)/t^3 ) ・(-2t) dt   = (1/3) ・(1 / (1 - 1/n )^(3/2) )・(1/n^2) - (2/3) [ 2t + (2/3) t^(-3)] = (1/3) ・(1 / (1 - 1/n )^(3/2) )・(1/n^2) - (2/3){2√(1-1/n) + 2/3(1-1/n)^(3/2) - 8/3} = (1/3) ・(1 / (1 - 1/n )^(3/2) )・(1/n^2) - (4/3)√(1-1/n) - 4/9 (1-1/n)^(3/2) + 16/9 私の解答はどこで間違っているのでしょうか? 回答よろしくお願いします。