• 締切済み

積分の定義式を証明する問題ができません

下記の証明問題についてです。 f(x)を[a,b]で単調増加とする。自然数nに対し,h=(b-a)/nとし,分割P(n)={x(0),x(1),…x(n)}をk=0,1,…,n, x(k)=a+kh、U(P(n),f(x))=Σ[i=1..n]M(i)・Δx(i) (M(i)=sup{f(x);x(i-1)≦x≦x(i)})とする時, (1) 0≦U(P(n),f(x))-∫[a to b]f(x)dx≦(b-a)(f(a)-f(b))/n が成立する事を示せ。 (2) ∫[a to b]f(x)dx=lim[n→∞]U(P(n),f(x)) という問題なのですがどうやって示せばいいのでしょうか?

みんなの回答

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.3

>「有界関数f(x)が[a,b]で下積分と上積分が一致する時,f(x) > は[a,b]でリーマン積分可能といい,∫f(x)dxと書く」 どう考えても、(1)、(2) は「単調増加関数が積分可能であること」を示そうとしているような書きようなわけですが。 それにしては無造作に ∫f(x)dx が問題文中に出てくるので戸惑わざるを得ません。 ホントウにこんな問題なんですか?

Erika111
質問者

お礼

> それにしては無造作に ∫f(x)dx が問題文中に出てくるので > 戸惑わざるを得ません。 > ホントウにこんな問題なんですか? 問題文は実は英語でそっくりそのまま書きますと [Q] Suppose f is monotone increasing on [a,b].For n∈N,set h=(b-a)/n.Let P_n={x_0,x_1,…,x_n} where for each k=0,…,n,x_k=a+kh. a. Prove that 0≦U(P_n,f)-∫[a~b]f≦(b-a)[f(b)-f(a)]/n. b. Prove that ∫[a~b]f=lim[n→∞]U(P_n,f). です。 何故か積分記号の後にdxが付いてません。 お手数お掛けしましてスイマセン。

noname#50894
noname#50894
回答No.2

循環論法になりそうで、 “定積分∫[a to b]f(x)dxは存在する”ことを前提にした問題 [従って、(※)が成立する]と考えて良いでしょうね。 更に、Δx(i)=x(i)-x(i-1)でしょうね。 >f(x)を[a,b]で単調増加… から、M(i)=sup{f(x);x(i-1)≦x≦x(i)}=f(x(i)) 従って、 U(P(n),f(x))=Σ[i=1..n]M(i)・Δx(i) =Σ[i=1..n]f(x(i))・[x(i)-x(i-1)] 一方、 m(i)=inf{f(x);x(i-1)≦x≦x(i)}=f(x(i-1)) D(P(n),f(x))=Σ[i=1..n]m(i)・Δx(i) =Σ[i=1..n]f(x(i-1))・[x(i)-x(i-1)] #U(P(n),f(x))-D(P(n),f(x))→0(n→∞)のとき、 #定積分∫[a to b]f(x)dxは存在する。 が成立する。…(※) この前提の下に、 (1) 0≦U(P(n),f(x))-∫[a to b]f(x)dx ≦U(P(n),f(x))-D(P(n),f(x)) ≦(b-a)(f(a)-f(b))/n は、手間がかかりません。 (2)(※)を前提にすると証明すべきことがないです。 ■それとも ・f(x)が[a,b]で単調増加であるとき、積分可能であることを証明せよ。 なのか、はっきりしません

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>(M(i)=sup{f(x);x(i-1)≦x≦x(i)}) f(x) は単調増加なので、M(i) = f(x(i)) それにしても、出題意図がよくわからんな。∫f(x)dx の定義はどうしてるんですか?

Erika111
質問者

お礼

> それにしても、出題意図がよくわからんな。∫f(x)dx の定義はどうしてるんですか > ? ∫f(x)dxの定義は 「有界関数f(x)が[a,b]で下積分と上積分が一致する時,f(x) は[a,b]でリーマン積分可能といい,∫f(x)dxと書く」 です。。。 この定義で出題意図が見通しよくなりますでしょうか。。。?

関連するQ&A

  • 積分 証明 問題

    積分 証明 問題 f(x)が単調増加ならばb≧0に対して、 ∫[0→a]f(x)dx≦∫[b→a+b]f(x)dxを証明せよ。 b=0のときは、∫[0→a]f(x)dx=∫[b→a+b]f(x)dx b>0のときは、∫[0→a]f(x)dx>∫[b→a+b]f(x)dx 理解できるのですが、どのように証明すれば良いでしょうか? ご回答よろしくお願い致します。

  • 2つの漸化式風の関数が同じあることの証明

    ある順列を2通りの方法で求めていて思いついた質問です。 n≧kなる自然数n,kに対して2つの関数f(n,k)とg(n,k)を定義します。 なお、下の定義式のCとPは高校数学で習う順列のことです。つまり、a≧b≧0なる整数a,bに対してC(a,b)=a!/(b!・(a-b!)) で P(a,b)=a!/(a-b)!です。 k=1のとき f(n,k)=1 k≧2のとき f(n,k)=Σ(i=0to(n-k)){C(n-1,i)・A(n-1-i,k-1)} k=1のとき g(n,k)=1 k≧2のとき g(n,k)=((k^n)-Σ(i=1tok-1){P(k,i)・A(n,i)})/k! このとき、f=gを証明するにはどうすればいいでしょうか。 例えば、k=2のときはf(n,2)=Σ(i=0to(n-2)){C(n-1,i)・1}          =Σ(i=0to(n-1)){C(n-1,i)}-C(n-1,n-1) =2^(n-1)-1 g(n,2)={2^n-P(2,1)・1}/2!          =2^(n-1)-1     で等しくなりますが、k≧3の場合にどうやればいいのか、わかりません。 kに関する帰納法でない解法でも結構です。

  • 積分の証明問題です。

    区間I=[a,b]で連続な関数f(X)がf(X)≧0で、かつある点Xo∈Iでf(Xo)>0 ならば、∫[a,b]f(x)dx>0であることを示したいんですがわかりません。 どなたか御解答お願いします。

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • ∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

    ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。 有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。 定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。 #以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。 ヒント fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。 同書の略解 分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ)) となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。 s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。 よろしくお願いいたします。

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。

  • 不定積分の問題

    不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。

  • 定積分の問題について

    定積分の問題についておしえてください 以下の問題の答えをおしえていただけないでしょうか 1.閉区間[α、β]で定義された連続関数y=f(x)のグラフを、x軸の周りに回転して得られる回転体の体積は V=π∫(αからβ){f(x)}^2dxで与えられる。これを用いて、半径aの球の体積を求めよ。 2.ε,k,Mを正の定数として、次の定積分を求めよ。 (a)∫(εから1)dx/x (b)∫(εから1)x^-kdx(k≠1) (c)∫(0からM)sinxdx (d)∫(0からM)xe^-xdx (e)∫(0からM)dx/e^x+1 (f)∫(0から1/2)dx/√1-x^2 お願いします。

  • 積分可能の証明

    [問]f(x)は[a,b]で定義された有界な関数とする  f(x)が[a,b]の1点cだけで不連続であるならば、f(x)は[a,b]で積分可能であることを証明せよ。  また、f(x)が[a,b]の有限個の点だけで不連続であるならば、f(x)は[a,b]で積分可能であることを証明せよ。 ________________________________ (proof) a<c<bとして、lim_x→c-0 f(x)≠f(c)のとき、f(x)は[a,c]で積分可能であることを示す。 任意のε>0を決めて、[a,c]をI=[a,c-ε] , J=[c-ε,c]とに分けて考える。 f(x)はIでは連続であるから、Iで積分可能。 また、Jでは、  Σ_J O_iδ_i ≦ Σ_J(M-m)δ_i =(M-m)Σ_J δ_i =(M-m)ε  {M,m は[a,c]におけるf(x)の上限、下限} であるから、f(x)はJでも積分可能、したがって、I∪J=[a,c]でも積分可能。 同様に、lim_x→c+0 f(x)≠f(c)のとき、f(x)は[c,b]で積分可能であることを示す。 ↑とりあえず、問題の前半部分はこのように解いたのですが、合っているでしょうか? また、後半部分がわかりません。どのように解けばいいのでしょうか? よろしくお願いします。

  • 証明問題?(積分)

    P(x) が3次の整式であるとき、次の式が成り立つことを示せ  ∫(a,b) P(x)dx = {(b-a)/6}*[P(a)+P(b)+4P{(a+b)/2}] と言う問題です。 ∫(a,b)は、aからbまで積分する と言いたかったんです(どうかけば良いか分からなかったので.. お願いします。