• ベストアンサー

ラマヌジャンのタクシー数に関する級数

3乗数の和で2通りに表される最小の数は、 1729=12^3+1^3=10^3+9^3 ⇔ 級数(Σ[n=1,∞]x^n^3)^2 の係数でが2である項の最小の次数は1729 ところで、Σ[n=1,∞]x^n^3という級数に関して、研究されていることとか、性質とかあるのでしょうか? 検索してみましたが見つかりませんでした。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

Σ[n=1,∞]x^(n^3) という級数自体にはあまり興味深い性質はなく、そのため目立った研究成果もないと思います。 ご質問の答えからは少しずれてしまいますが、Σ[n=1,∞]x^(n^2) という級数は(ご存知かもしれませんが)大変面白い性質があります。 正確には1/2 +Σ[n=1,∞]x^(n^2) (あるいは Σ[n=-∞,∞]x^(n^2)でも同等) という級数が大切で、重さ1/2の保型形式というものになります。 保型形式というのは興味深い変換公式を満たし、同じ性質(重さ、変換の群)を持つものがごく限られていることを利用して、しばしば保型形式同士の様々な関係式を導けることがあります。例えば、テータ関数Σ[n=-∞,∞]x^(n^2)の4乗があるアイゼンシュタイン級数とよばれるものになることから、全ての自然数nは必ず4つの平方数の和で表すことができ、さらにその表し方の方法の数が 8×(nの4で割れない約数の和)に等しいことも分かります。ただし表し方の方法は 1=1^2+0^2+0^2+0^2=0^2+1^2+0^2+0^2=0^2+0^2+1^2+0^2=0^2+0^2+0^2+1^2 =(-1)^2+0^2+0^2+0^2=0^2+(-1)^2+0^2+0^2=0^2+0^2+(-1)^2+0^2=0^2+0^2+0^2+(-1)^2 のように順番や、±も別々に数えるものとします。 テータ関数、テータ級数、q展開、q series、保型関数、保型形式、アイゼンシュタイン(Eisenstein)級数、四平方数定理などの検索ワードで調べれば関連するトピックに関する沢山の情報が見つかると思います。 また、楕円関数(elliptic function)というものをご存知でしたら、ヤコビ(Jacobi)形式と呼ばれる、楕円関数と保型形式の両方の性質を持つ2変数関数もあるのでよかったら調べてみてください。変換公式だけでなく加法公式や、無限積など色々不思議な公式を持っていて、面白い対象です。ヤコビテータ関数などで調べれば、色々情報が見つかると思います。

aiueo95240
質問者

お礼

有意義な情報、まことにありがとうございます。 多角数定理など、「2乗」はうまくいくことが多いのに、「3乗」になると興味深い性質はなさそうなのですね。

関連するQ&A

  • 無限級数の和の求め方

    |x|<1/2 の時の下の無限級数の和を求めるのはどうやったらよいのでしょうか? 1+3x+7x^2+15x^3+・・・・・ ってなっていて一般項は(2^n-1)x^(n-1)だとわかったのですがその先がわからないので是非お願いします。

  • 無限級数の問題です。

    こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕    の和を求めてください。    (1)は部分和を出さなければいけないというのは     判るのですがどうしたら良いのか判りません。     (2)ある無限等比級数の和は6で、その級数の各項    の平方を項とする無限等比級数の和は12です。    もとの級数の初項と公比を求めてください。    (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。

  • 級数和の問題

    (1)級数 Σ[n=1~∞]1/nは発散することを示せ。 →積分判定法により、発散 (2) m桁の自然数のうち0が入らないものの個数を答えよ。 1つの桁に対して、1~9までの9通りの入り方があるので、9^m個 を踏まえて、 (3) (1)の和から、nに0の文字が入った項(1/10,1/20など)を抜いた級数をSとする。 このSが収束することを示せ。 という問題です。(3)について教えてください。

  • べき級数で解く微分方程式

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。 x (dy/dx) - y = x^k     (ただし、kは1以外の自然数) 解答 y を式(5.1)のべき級数で展開し、微分方程式に代入して係数a_iについての関係式を求める。 (1) べき級数展開から次の式を得る。      x Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^k xの次数ごとに両辺の係数を比較すると、n≠kなるnについて (n-1)a_[n] = 0 となる。 ←疑問点 n≠1 (n≠k) に対して a_[n] = 0 であり、(k-1) * a_[k] = 1より y = 1/(k-1) * x^k を得る。 n=1に対しては、a_[n] = a_[1] ≠ 0でも(n-1) * a_[n] = 0となる。 実際、y = 1/(k-1) * x^k + ax (aは任意の定数) が微分方程式の解となる。 ・・・と本に書いてありますが、「疑問点」のところの比較の方法が分かりません。 まず、i が 0 から n まで変化する過程を自分で計算してみました。 i=0: x * (0+1) a_[0+1] * x^0 - a_[0] * x^0 = a_[1] * x - a_[0] i=1: x * (1+1) a_[1+1] * x^1 - a_[1] * x^1 = 2a_[2] * x^2 - a_[1] * x i=2: x * (2+1) a_[2+1] * x^2 - a_[2] * x^2 = 3a_[3] * x^3 - a_[2] * x^2 : i=n: x * (n+1) a_[n+1] * x^n - a_[n] * x^n = (n+1) a_[n+1] * x^(n+1) - a_[n] * x^n これらを使って「xの次数ごとに両辺の係数を比較する」んですよね。 しかし左辺だけでも、xの次数が1つずつズレていますよね・・・? これらと x^k を具体的にどうやって比較するのでしょうか? x^2ならx^2だけでまとめるんですか? それともx^3とx^2が混ざった形で比較するのですか(どうやってやるのか分かりませんけども)? どうか教えてください。お願いします。

  • フーリエ級数の問題です

    f(x)= x (-π<= x <=π) のフーリエ級数を用いて無限級数和            (1) Σ[n=1~∞] Σ 1/n^2 (2) Σ[n=1~∞] (-1)^n/n^2        を求めよという問題ですが、フーリエ級数は求められて       f(x)=   2Σ[n=1~∞] {(-1)^n+1}*sin(nx)/n       になるけれど、xに何を代入すればいいかわかりません。御回答よろしくお願いします。

  • 級数展開 剰余項 計算(評価)

    級数展開 剰余項 計算(評価) e^xの巾級数展開について、 剰余項R(n+1)がlim[n→∞]R(n+1) = 0になれば、 e^x=Σ[n=0~∞]((x^n)/(n!))と表せることは理解できました。 Rの係数?は実際(1/((n+1)!))となるからe^xは巾級数展開可能 であると理解したのですが、e^xの場合lim[n→∞]R(n+1) は具体的に どのように計算(評価)されるのでしょうか? また、剰余項に関して、 R(n+1)やR(x^(n+1))などと表記されるようですが、なにか 違いはありますか? それぞれの表現について教えて頂けないでしょうか? また、C^ω級は級数展開可能である関数を表す場合に用いられると 理解したのですが、C^ω級は無限級数展開でも有限級数展開 (有限級数展開の例が思いつきませんが・・・)でもどちらでも 使用して良いのでしょうか? また、C^ω級はテーラー展開の場合(x=0で級数展開できない場合)でも 使用して良いのでしょうか? ご回答よろしくお願い致します。

  • 無限等比級数の問題

    数検の無限等比級数の問題です。 1+1/2+1/2^2+・・・・・・・・1/2^n-1+・・・・・ について次の問に答えなさい 1.上の無限等比級数の和を求めなさい。 2.上の無限等比級数の第何項までの部分和を求めれば、1で求めた和との差がはじめて1/10^4より小さくなりますか。 ただしlog(10)2=0.3010とします。 この問題なんですが、1の答えは「2」だとすぐに分かりましたが、 2の答えの求め方が分かりません。 答えは「第15項」と書いてありますが、解説が書いていなくて・・・・・・。 どのようにして解けばよいか教えていただけないでしょうか? よろしくお願いします。

  • 無限級数について

    問題 無限級数1-1/2+1/2-1/3+1/3-1/4+1/4-・・ ・・(1)について,(1)級数(1)の初項から第n項までの部分和をSnとするとき,S2n-1,S2n をそれぞれ求めよ。 解答 S2n-1=1-1/2+1/2-1/3+1/3-1/4+1/4-・・-1/n+1/n =1-(1/2-1/2)-(1/3-1/3)-・・-(1/n-1/n)=1 S2n=S2n-1-1/(n+1)=1-1/(n+1) とあるのですが1/(n+1)がどこからくるのか,色々と調べてみたのですがわかりません。どうかよろしくお願いします。

  • 対数関数の無限級数を求める問題

    ∞Σ(n=2) log2{1+1/(n^2ー1)}ですが解答ではまず部分和を求めて無限級数を求めていたのですがその部分和が第nー1項までの和S(nー1)を求めているみたいなのですがなぜ第n項までではないのですか?それに第nー1項までの和をもとめるのにS(nー1)=nΣ(k=2) log2{1+1/(k^2ー1)}と書いてあったのですがなぜS(nー1)=nー1Σ(k=2) log2{1+1/(k^2ー1)}ではないのですか?どなたか教えて頂けないでしょうか?

  • フーリエ級数展開について

    xsin(x)のフーリエ級数展開で困っています。 xsin(x)は偶関数なのでコサイン成分だけを考えます。 sin(x)cos(nx)は積和の公式で1/2*(sin(n+1)+sin(n-1))となります。 1/π∫{xsin(n+1)+xsin(n-1)dx}を部分積分を利用して解きます。 ここで、第二項目なのですが、整理すると(-1)^n/(1-n)になるんですよね。 第一項目と合わせると係数は2(-1)^n/(1-n^2)となりました。 ここで、n=1の時分母が0になってしまい、係数が無限になってしまいます。この扱いをどうすればいいか分かりません。 2(-1)^n/(1-n^2)はnが2以上の時として、n=1についてはまた別で計算すればいいんでしょうか? フーリエ級数の問題は大体n=0とn=1以上で場合分けされており、n=0、n=1、n=2以上となっているのは見たことがありません。ですので、心配になったので質問しました。よろしくお願いします。