上司さんの説明はおかしいように思います。
光電効果は電磁波が物質中に到達できる範囲で起こります。従って、物質表面が最も反応することになります。
金属であれば、多くの電子は原子核を離れて自由電子となり、ポテンシャルエネルギーが最低で安定するよう、金属表面に集中して分布しています(なお、平面でなく凹凸があれば尖っているほど集中する)。
そこへ電磁波を当て、波長をだんだん短くしていくと、ある波長以下になると電子が飛び出します。まず飛び出してくるのは金属表面の自由電子です。
自由電子は原子核からおおむね遠い軌道(内殻より外殻の方がポテンシャルが低いこともあるので、正確にはポテンシャルが小さい順)から順に自由電子となりますから、最も内側であるK殻は自由電子になりにくいのです。
金属でない場合は自由電子はなく、物質表面の原子の、おおむね最外殻から電子が叩き出されます(これも、本当はポテンシャル順)。金属原子まで電磁波が到達した場合も同じです。最も内側のK殻の電子を叩き出すには、L殻の電子を叩き出せる波長より短い波長の電磁波が必要です。
物質表面の原子から光電効果で電子が叩き出される場合、K殻から電子を叩き出すにはその外側よりも波長が短い、すなわり高いエネルギーの電磁波が必要で、その意味では最も電子が叩き出されにくいと言えます。
K殻の電子も叩き出せるほど短い波長の電磁波の光電効果であるとして、電磁波照射中は次々と電子が物質表面の原子から飛び出して来ますから、表面の原子の物質の結合に関与していない電子は尽きてしまい、それを補うように次々と内側の原子から外側へ電子が移動することになります。
このとき、光電効果で出てくる電子について、K殻からのものがどれくらいの割合になるかは、照射される光子の数(いわゆる明るさ)と物質内部から表面へ移動する電子の速さに依存し、単純にどうなのかを言うことはできません。
具体的には、例えば表面が光電効果により常にK殻の電子まで不足するのか、物質の原子の結合はどの軌道のものか、その軌道に原子核は本来何個の電子があるか、等々が影響します。
以上は一般論ですが、実際に放射線を照射すると、多くの物質でK殻からの電子が最も多くなります。これは原子核から近いためではなく、ポテンシャルエネルギーの大きさの問題です(原子核から近い、がポテンシャルの意味で言っているなら正解)。
電子が電磁波で励起される(ポテンシャルの高い殻へ移動する)のは、電磁波光子1個当たりのエネルギーが移動する殻間のポテンシャルエネルギー差以上で、さらにポテンシャルの高い殻までではないときです。余ったエネルギーは熱となります。
電子が原子から完全に飛び出す場合を考えると、例えば光子のエネルギー(波長の短さ)がL殻から電子が飛び出すには充分であっても、K殻からでは不足な場合、K→L殻などの原子内での殻間の遷移に使われてしまいます。
そのため、観測可能なくらいの光電効果を起こすのであれば、K殻から電子を叩き出せる波長の電磁波が必要となります。反応として、K殻を差し置いてL殻やさらに外側の殻から光電効果が起こることはありません。K殻の電子を叩き出して、さらにエネルギーが余っていて、それがL殻の電子を叩き出すほどであれば、L殻からも電子が出てきます。さらに外側の殻も順次同様です。
それが現象的にはK殻からの電子が最も多くなる理由です。
なお、そうなる仕組みとして、電子を励起する電磁波が励起に必要なエネルギー以上で、かつ余剰が小さいほど起こりやすいということがあります。言葉を変えれば、光子が電子の励起について余剰が少ないほど、電子に吸収される確率が高くなるということです。
それについて、波長と衝突断面積の関係といった表現をすることがあります。確率が大きいということを、衝突の断面積が大きいと表現するわけです。
光子のエネルギーの余剰が少ないほど衝突断面積が大きくなります。その表現を用いれば、光電効果が起こるK殻の電子を叩き出すに足る電磁波では、K殻より外側の殻ほど余剰エネルギーが大きく、すなわち衝突断面積が「K殻>L殻>…」であるため、光電効果で観測される電子は、K殻のものが最も多くなる、という説明も可能です。