• ベストアンサー

Borel集合の例

「実数直線R上のボレル集合体 B(R) は、R 内の任意の区間を含む最小の完全加法族である」のは正しいと思いますが、実数直線上の完全加法族で、B(R)を真に含んでいるものの例はあるのでしょうか? (ただし、Rには通常の位相を入れるものとします。)

質問者が選んだベストアンサー

  • ベストアンサー
  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.5

ANo.2です。すでにANo.4で指摘されていますが、ボレル非可測なルベーグ可測集合の作り方は以下の通りです。 1. ルべーグ非可測集合を用意する(これには選択公理を使う) 2. カントール関数を使って1のルベーグ非可測集合をカントール集合の中に写像する 3. 2の像はカントール集合の部分集合なのでルベーグ測度ゼロ、従ってルベーグ可測になる 4. カントール関数は連続なので2の像はボレル可測ではない(これがボレル可測なら1もボレル可測になってしまう) あと、検索したら非ボレル集合の構成方法がありました。 http://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%AC%E3%83%AB%E9%9B%86%E5%90%88 ただこの例の集合がルベーグ可測かどうかは分かりません。

graphman2
質問者

お礼

何度も丁寧にお答えいただき、有り難うございました。 お陰様で、大変勉強になりました。

その他の回答 (4)

noname#199771
noname#199771
回答No.4
graphman2
質問者

お礼

ありがとうございます。 大変参考になりました!!

回答No.3

< rinkunさん,横槍を入れてすいません. 僕はあまりこの手の話題に詳しくないのですが,数学辞典によるとルベーグ可測でない集合が存在して,(G. Vitaliによる)その構成法が選択公理を使うものだそうです.もしかするとこの例と勘違いされてませんか?(僕が無知なだけかもしれませんが…) 「cを連続体の濃度としたときRにおいてルベーグ可測な集合全体の濃度が2^c,ボレル集合族の濃度がcだから」という議論から存在することはわかるそうです.(やはりあまり詳しくないので責任ある発言ではありせんが…) rinkunさんのいうような構成法も知られているのかもしれませんが,発見できなかったので,もし僕の無知による勘違いでしたら後学のために出典を明記してくれませんか?

graphman2
質問者

お礼

ご回答いただき、ありがとうございます。 私も勉強になります。

  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.2

具体的な例は無理と思います。 たしか、ルベーグ可測でボレル可測でない例は選択公理を仮定しないと作れなかったはずです。 # 選択公理を使う必要がある=構成的には作れない

graphman2
質問者

お礼

有り難うございます。 (なるほど!!)

  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.1

ルベーグ可測集合族がその一例では? ルベーグ可測でボレル可測でない集合が存在することからボレル集合族より真に大きな集合族であることは明白ですね。

graphman2
質問者

お礼

ご返事を頂き、有り難うございます。 ルべーグ積分に習熟していないため、初歩的な質問になり大変申し訳ありませんが、そのようなものを具体的に書き出すことはできるのでしょうか?

関連するQ&A

  • これはハイネ-ボレルの定理の矛盾?

    こんにちは。 『(ハイネ-ボレルの定理)コンパクト位相空間Xの任意の閉集合Aはコンパクトである』 というのを本で見かけました。 『実数空間Rの閉区間[a,b]はコンパクトである(ハイネ-ボレルの定理)』というのも見かけましたので「なるほど、Rはコンパクト位相空間だから[a,b]はコンパクトになるんだなあ。」 と思っていましたら その後に 『[例] 実数空間Rにおいて、R及び、開区間(a,b)はコンパクトでない事を証明せよ』 とも書いてありました。 Rは位相空間ですがコンパクトでなくても閉区間[a,b]はコンパクトになるのですか? 何かおかしくないですか? ハイネ-ボレルの定理に詳しい方ご解説をお願い致します。

  • ボレル集合族について

    「『ボレル集合族B(R^2)』をσ-加法族の定義からはじめる形で定義しなさい」という問題があったのですが、どうやっていけばよいのか全く分かりません。『ボレル集合族』や『σ-加法族』は分かるのですが…。どなたかお詳しい方、よろしくお願いします。

  • ボレル集合族って何ですか???

    ボレル集合族を、イマイチ上手く捉えられません。 頭の悪い自分なりに考えたのですが、 自分の解釈が正しいのか全く分かりません。 指摘お願いします。 ちなみに自分なりの解釈↓ 全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個 Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・}    Fの元の個数は2^M個で、FはΩのσ加法族 A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。 このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。 つまり↓ Ω={ω1、ω2、・・・・・} F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} A⊂F A={・・・・・・・} B={A、・・・・・・・・・・}         BはAのσ加法族 C={A、B、・・・・・・・・・・}       CはBのσ加法族 D={A、B、C、・・・・・・・・・・}     DはCのσ加法族 E={A、B、C、D、・・・・・・・・・・}   EはDのσ加法族 ・ ・ ・ A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、 B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。 ってことですかね??? よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、 私の解釈だと、Ω∊B となっていません。 ???って感じです。 ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。 で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・? 頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。 図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。 助けて下さい。

  • 測度論;完備化、測度零集合について。

    こんにちは、測度論(確率論)を勉強しているのですが、完備化について質問させてください。 まず、ルベーグ測度を考える上でなぜσ-加法族の完備化が必要となるのか? 例えばR上のボレル集合体はRの開集合全体の加算和、加算交差などから成る集合体で極めて多様な集合を含むはずですが、それに含まれない測度零集合がRに存在して、それらを付け加えることで完備になる、という理解をしていますが、ボレル集合体に含まれない測度零集合とはどんなものでしょうか?例を挙げていただけるとありがたいです。 即ち、B(R);R上のボレル集合体, μ;B(R)上の測度として N* = {N⊂R ; NはB(R)に属さず、N⊂A∈B(R) , μ(A)=0}となるN*の要素はどんなものでしょうか? ボレル集合体ではルベーグ測度を考えるのに不十分、という理由が今ひとつ分かっていません。

  • 2次元ボレル集合について

     すみません、教えてください。  2次元のボレル集合、B(R^2)は、1次元ボレル集合2個の直積、B(R)×B(R)とは 違うものということでよかったでしょうか。  よろしくおねがいします。

  • 測度の拡張が一意でない例を教えて下さい

    こんにちは。 早速、題名の通りですが、測度論の拡張定理より、σ~有限な測度は有限加法族からσ加法族への拡張が一意というのを学びましたが、ではそうでない例として有限加法族から一意でない拡張ができる例を探しています。たとえば開集合全体からボレル集合への拡張を考えるとσ有限なので例になっていませんし…。

  • 実数全体の集合,超実数全体の集合,複素数全体の集合の包含関係は?

    超実数なるものを知りました。 「公理:Rは完備順序体である 公理:R*はRの真拡大順序体である Rを実数体,R*を超実数体と言い、それぞれの元を実数,超実数と言う」 といったものですが 実数全体の集合,超実数全体の集合,複素数全体の集合の包含関係はどうなっているのでしょうか? また、実数は直線,複素数は縦軸を書き足して平面として表す事が出来ますよね。超実数はこれらに何を書き足して表されるのでしょうか?

  • 証明問題, B(R^n)=σ(J_n)を示せ(B(R^n)はn次元ボレル集合体)

    今日はよろしくお願い致します。 B(R^n)をn次元ボレル集合体,σ(J_n)をn次元区間J_nから生成されるσ集合体とする。 [問] B(R^n)=σ(J_n)となる事を示せ。 [証] R^nの位相はn次元開区間の任意個の和集合T:={∪[λ∈Λ]I_λ∈2^X;I_λはn次元開区間(Λは非可算集合)}と採れるから B(R^n)=σ(T)(∵ボレル集合体の定義) =∩[B∈{B;T⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n (∵Tを覆えるのはR^nしかないので (∵もし,仮にR^nの真部分集合でTを覆えたものがあったとすると 少なくとも(-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)(a∈R,n個の直積集合) というような有界な区間がある。この時, (-∞,+∞)×(-∞,+∞)×…×(a-1,+∞)×…×(-∞,+∞)∈Tなのに (-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)はTを覆えてない)) 同様に σ(J_n)=∩[B∈{B;J_n⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n(∵上記と同じ理由) 従って B(R^n)=σ(J_n)となったのですがどこかおかしいでしょうか?

  • ボレル集合体に含まれないRの部分集合

    ボレル集合体に含まれないRの部分集合の具体例を教えていただきたいです。

  • 空集合の扱い方について

    とっても読みにくい文章になってしまいましたが、回答お願いします。記述の仕方のささいな誤りは見逃してください… 「P(x)を満たす任意のx∈R(実数)がQ(x)を満たす。」という命題(命題1)について、 P(x)を満たすxが存在しないとき(つまり、{x∈R|P(x)}=Φのとき)、この命題は真だと説明されました。 理由としては、 「この命題が偽ならば、P(x)を満たすがQ(x)を満たさないxが反例として存在するはずだが、P(x)を満たすようなxはそもそも存在しない。よって真である。」 ということらしいのです。 そこで、Q(x)の否定をR(x)として、「P(x)を満たす任意のxがR(x)を満たす。」(命題2)の真を同様に証明することもできるのでしょうか? もしできるのなら続けて質問があります。 P(x)を満たすxの集合をS、Q(x)を満たすxの集合をTとすると、命題1が成り立つとき、SはTに含まれています。Sが空集合の場合を考えると、空集合は任意の集合の部分集合である、といえます。(これは授業でやりました) しかし命題2が成り立つならば、SはTに含まれていません。空集合はどの集合にも含まれない、ということになりますよね。 空集合は任意の集合の部分集合であると同時に、どの集合にも含まれないという理解で良いのでしょうか? また、Q(x)=(x≦u)とすると、「SはTの部分集合である⇔uはSの上界である」となり、命題1をこれまでと同様に命題1をあてはめると、任意の実数uは空集合Φの上界である。となり、命題2をあてはめると任意の実数uは空集合Φの下界である。ということになりますが、これも上と同様の、任意の実数uは空集合Φの上界であり、下界である、というふうに理解したのでよいですか?