• ベストアンサー

2次元ボレル集合について

 すみません、教えてください。  2次元のボレル集合、B(R^2)は、1次元ボレル集合2個の直積、B(R)×B(R)とは 違うものということでよかったでしょうか。  よろしくおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

もちろん違います。 理由は、L 字形。

その他の回答 (1)

noname#153246
noname#153246
回答No.2

「2次元のボレル集合、B(R^2)は、1次元ボレル集合2個の直積、B(R)×B(R)とは違うもの」 はよくわからない文章です。 何となく近そうな疑問を考えると 「2次元ユークリッド空間のボレルσ代数は、1次元ユークリッド空間のボレル集合の直積の全体とは異なる」 あたりでしょうか。 それはもちろん違うものということでよかったと思います。 しかしボレルσ代数の定義を一読しただけでも、こんな疑問は生まれないはず…。 ただ位相を知らなければ当然にボレルσ代数の定義は読めないと思いますが。 こちらの誤解の可能性もありますがとりあえず質問文はよくわからないので、見直してみては。 (少なくともB(R)は集合ではなく集合の集合を表す記号なので、B(R)×B(R)が何を表しているか、その辺から。)

関連するQ&A

  • ボレル集合族について

    「『ボレル集合族B(R^2)』をσ-加法族の定義からはじめる形で定義しなさい」という問題があったのですが、どうやっていけばよいのか全く分かりません。『ボレル集合族』や『σ-加法族』は分かるのですが…。どなたかお詳しい方、よろしくお願いします。

  • ボレル集合族って何ですか???

    ボレル集合族を、イマイチ上手く捉えられません。 頭の悪い自分なりに考えたのですが、 自分の解釈が正しいのか全く分かりません。 指摘お願いします。 ちなみに自分なりの解釈↓ 全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個 Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・}    Fの元の個数は2^M個で、FはΩのσ加法族 A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。 このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。 つまり↓ Ω={ω1、ω2、・・・・・} F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} A⊂F A={・・・・・・・} B={A、・・・・・・・・・・}         BはAのσ加法族 C={A、B、・・・・・・・・・・}       CはBのσ加法族 D={A、B、C、・・・・・・・・・・}     DはCのσ加法族 E={A、B、C、D、・・・・・・・・・・}   EはDのσ加法族 ・ ・ ・ A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、 B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。 ってことですかね??? よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、 私の解釈だと、Ω∊B となっていません。 ???って感じです。 ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。 で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・? 頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。 図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。 助けて下さい。

  • ボレル集合族についての証明

    次の問題の証明を教えてください。 R上のボレル集合族をβ(R)、CをRの閉集合全体の集合とするとき、σ(C)=β(R)を示せ。

  • 証明問題, B(R^n)=σ(J_n)を示せ(B(R^n)はn次元ボレル集合体)

    今日はよろしくお願い致します。 B(R^n)をn次元ボレル集合体,σ(J_n)をn次元区間J_nから生成されるσ集合体とする。 [問] B(R^n)=σ(J_n)となる事を示せ。 [証] R^nの位相はn次元開区間の任意個の和集合T:={∪[λ∈Λ]I_λ∈2^X;I_λはn次元開区間(Λは非可算集合)}と採れるから B(R^n)=σ(T)(∵ボレル集合体の定義) =∩[B∈{B;T⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n (∵Tを覆えるのはR^nしかないので (∵もし,仮にR^nの真部分集合でTを覆えたものがあったとすると 少なくとも(-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)(a∈R,n個の直積集合) というような有界な区間がある。この時, (-∞,+∞)×(-∞,+∞)×…×(a-1,+∞)×…×(-∞,+∞)∈Tなのに (-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)はTを覆えてない)) 同様に σ(J_n)=∩[B∈{B;J_n⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n(∵上記と同じ理由) 従って B(R^n)=σ(J_n)となったのですがどこかおかしいでしょうか?

  • ボレル集合体に含まれないRの部分集合

    ボレル集合体に含まれないRの部分集合の具体例を教えていただきたいです。

  • σ集合体はボレル集合体の特別な集合体?

    ボレル集合体の定義は 「Xを集合とし,B∈2^Xとする。この時Bが (i) B≠φ (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のボレル集合体という」 σ集合体の定義は 「BがX上のボレル集合体とする。この時Bが (i) X∈B (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のσ集合体という」 と解釈したのですがこれで正しいでしょうか?

  • ボレル集合体について

    ある袋に赤色と緑色の玉がそれぞれ1個、青色の玉が2個入っている。袋から無作為に玉をひとつ取り出して玉の色を調べる。玉の色をそれぞれR,G,Bであらわす。青色の2つの玉は区別しない。 (問)確率を議論するためのボレル集合体を記述せよ。 という問題が分かりません。回答お願いします。

  • ボレル可測ではないルベーグ可測な集合

    ボレル集合でない可測集合の作り方は極めて病的と聞きましたが、その例はどのようなものでしょうか? よろしくお願いします。

  • 測度論;完備化、測度零集合について。

    こんにちは、測度論(確率論)を勉強しているのですが、完備化について質問させてください。 まず、ルベーグ測度を考える上でなぜσ-加法族の完備化が必要となるのか? 例えばR上のボレル集合体はRの開集合全体の加算和、加算交差などから成る集合体で極めて多様な集合を含むはずですが、それに含まれない測度零集合がRに存在して、それらを付け加えることで完備になる、という理解をしていますが、ボレル集合体に含まれない測度零集合とはどんなものでしょうか?例を挙げていただけるとありがたいです。 即ち、B(R);R上のボレル集合体, μ;B(R)上の測度として N* = {N⊂R ; NはB(R)に属さず、N⊂A∈B(R) , μ(A)=0}となるN*の要素はどんなものでしょうか? ボレル集合体ではルベーグ測度を考えるのに不十分、という理由が今ひとつ分かっていません。

  • 直積集合の元は必ず集合となる?

    度々すいません。また数学基礎論での質問です。 a,bを集合として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。 そして、 A×B:={<a,b>;(a∈A)∧(b∈B)}と定義し、A×Bを直積集合と呼ぶ。 と記載されているのですが、 これだとAやBは集合系(集合が元であるような集合)でa,bは集合ですよね。 (A×Bの元<a,b>は2^(2^(A∪B))の元?) でも 通常、数学基礎論以外の教科書(微分積分や線形代数)ではA×Bの元は集合でない場合で定義されてますよね。 A×B:={<a,b>;(a∈A)∧(b∈B)}が直積集合の定義で微分積分や線形代数での直積集合の定義も含んでいるのなら、 元は集合にも成りうるのでしょうか? 具体的には a,bを集合として<a,b>:={{a},{a,b}}と定義し、A×B:={<a,b>;(a∈A)∧(b∈B)}と定義するのなら実数体の直積集合R×Rの元(例えば(√2,1/2))は集合と言ってもいいのでしょうか?