• 締切済み
  • すぐに回答を!

統計学

2つの確率変数XとYの関係をY=3X+2とする。Xが自由度8のt分布に従うとき(すなわち、X~t(8)のとき)、P(Y≦y)=0.05となるyを求めなさい。ただし、PP(Y≦y)は確率変数Yがy以下の値をとる確率とする。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数65
  • ありがとう数0

みんなの回答

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

P(X ≦ x) = 0.05 となる x を t分布表から決めて、 y = 3x+2 で求めたらいいです。 参考→ http://staff.aist.go.jp/t.ihara/tinv.html の表によると、自由度 8 で確率 0.05 となるのは X ≧ 1.8595 のとき(片側検定危険率0.05のところを見る)なので、 X ≦ -1.8595 でも、確率は同じ 0.05 になります。 x = -1.8595 ですから、 y = 3(-1.8595)+2 = -3.5785 ということです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 統計学を教えて

    次の問題に苦しんでいます。教えてくれると助かります。 確率変数X.Yは独立で、それらの平均と分散は、E(X)=μ1、E(Y)=μ2、V(X)=σ1^2、V(Y)=σ2^2 であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X.Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 出来れば、解説もしてもらえると助かります。

  • 統計学でこまってます。

    レポートが不合格で返ってきました。どうしても わかりません。おしえてください。     離散型確率変数X、Yの分布は   P(X=xi)=pi,P(Y=yi)=qi (i=1,2)です。 (1)E(X+Y)=E(X)+E(Y) (2)XとYが独立な確率変数であるとき   V(X+Y)=V(X)+V(Y)  批評は(1)Pi=ri1+ri2,qj=v1j+v2jを証明してください。     (2)X、Yが独立のとき        E(XY)=E(X)E(Y)を証明する。 確率変数Xが二項分布B(9、1/2)に従う時、Xの分布の値 P(X=k)=(0~9)のひとつひとつを正規分布で近似し 相対誤差を計算する。ここで相対誤差|d/P(X=k)|*100%, d:誤差です。数値は小数点以下第6位を四捨五入して第5位まで。 批評はP(X=K)[K=0~9]のひとつひとつを正規近似する。    9C0=(1/2)^0=1です。 上記3問よろしくお願いします。

  • 統計学について

    統計学の問題です。平均はできたのですが、分散ができなくて困っています。解答、解説をどうかよろしくお願いします。問題は以下です。 確率変数X、Yは独立で、それらの平均と分散はE(X)=μ1、E(Y)=μ2、V(X)=σ1、V(Y)=σ2であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X、Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 ちなみに、答えは、E(Z)=pμ1+(1-p)μ2、V(Z)=pσ1+(1-p)σ2+p(1-p)(μ1-μ2)^2 です。

  • 統計学の問題です

    教えて下さい。 以下の確率分布において、なぜ確率変数XのMedian(中央値)が2になるのでしょうか?  Xがとる値   1    2    5    9  その確率   0.1   0.6   0.2   0.1

  • 統計学の問題

    理系の大学一年生です 統計学の問題でいくら考えてもわかりません。 2つあるので、どちらかでも分かれば回答をお願いいたします。 [I]3つの確率変数X,Y,ZはVar(X)=Var(Y)=Var(Z)=1であり、Cov(X,Y)=Cov(Y,Z)=Cov(Z,X)=ρとする このときX+Y+Z,X+Y-Z,X-Y-Zを分散の大きい順に並べよ。 [II]t分布のパーセント点tn(α)とF分布のパーセント点f1,n(α)の間に {tn(α)}^2=f1,n(α) の関係があることを示せ

  • 数学(数理統計学)の質問です。

    数学(数理統計学)の質問です。 2つの確率変数X,Yはそれぞれ密度関数f(x),g(x)をもつ分布に従い、平均E(X)=μ,E(Y)=ν,分散V(X)=σ^2,V(Y)=τ^2をもつとする。さらに、εはベルヌーイ分布Ber(p)に従う確率変数であり、X,Yと独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yはどのような分布に従うか、その確率変数を求めよ。また、平均E(Z)と分散V(Z)を求めよ。 答えはあるのですが、解答に至る過程がわかりません。ご指導よろしくおねがいします。

  • 統計学について

    統計学の問題です。(1)はできたのですが、(2)(3)ができなくて困っています。解答、解説をよろしくお願いします。問題は以下です。 確率変数X、Yは独立でポアソン分布Po(λ),Po(μ)に従うとする。 (2)正の整数nに対して、X+Y=nが与えられた条件の下でX=r(r=0,1,・・・,n)である確率P(X=r | X+Y=n)を求めよ。 (3)X+Y=nが与えられた条件の下でのXの条件付き分布はどのような分布か。そのときの条件付き平均、条件付き分散を求めよ。

  • 統計学の問題で困ってます!

    XとYが独立した確率変数で それぞれの積率母関数が m_X(t)=[0.5/(1-0.5e^t)]^2 , t<log(1/0.5) m_Y(t)=[0.5/(1-0.5e^t)]^3 , t<log(1/0.5) であるとする。 Z=X+Yの確率関数を求めよ といった問で、 m_Z(t)=m_X(t)・m_Y(t) から[0.5/(1-0.5e^t)]^5 負の二項分布の積率母関数 であることはわかりました このあと、確率関数にするのですが 幾何分布の定義 f_X(x)=p(1-p)^x x=0,1,2… にそのまま当てはめればいいのでしょうか(__) よくわからないので どなたか教えてください。 お願いします

  • 統計学の問題

    統計学の問題で ある工場での日給の平均が$50で標準偏差が$10の正規分布をしている。上記の確率変数の日給が$40から$120の値を取る確率はなにか? という問題なのですが、どうやって求めたらいいのかが皆目見当つきません。どうやって求めたらいいのでしょうか?

  • 統計学 確率変数変換後の期待値

    確率変数Xが確率密度f(x)]の確率分布にしたがうとき、 新たな確率変数をY=aX+bと定義したとき、 E[Y]=∫[-∞~∞](ax+b)f(x)らしいですが、 なぜ E[Y]=∫[-∞~∞](ax+b)g(y)ではないんですか? 手元の参考書には、 確率変数を変換すると確率密度も変わると書いてあります。 それならば新たな確率変数Yは新たな確率密度g(y)に従って上に書いた式になると思ったんですが・・・