• 締切済み
  • すぐに回答を!

力学の問題を教えてください

図のような半円板で,外力Fを取り除くと半円板は振動をします. この半円板の重心周りの回転モーメントをIとしたときの問題です. 「この半円板が任意の角θだけ傾いているとき, 初期角θ0の姿勢から失った位置エネルギP と, 重心の並進運動エネルギおよび回転運動エネルギの和 Uを, 重心の X, Y軸方向 の速度成分dx/dt, dy/dt, 重心の角変位θと角速度 dθ/dt, M, g, Iを用いて表わせ」 「振動の運動方程式をたて,dθ/dt≠0の場合に,エネルギ保存式を時間で微分すると運動方程式が得られることを示せ」 というものです. 宿題で出たのですが,さっぱり分からないので解き方を教えて欲しいです.

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数949
  • ありがとう数0

みんなの回答

  • 回答No.1
  • uen_sap
  • ベストアンサー率16% (67/407)

あれれ? 位置エネルギー=mgh h=-d*sinθ 運動エネルギー=1/2*M*((dy/dt)^2+(dx\dt)^2) 運動エネルギー=1/2*I*ω^2=1/2*I*(dθ/dt)^2 相当の初歩問題です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 力学の問題です。

    水平面を速度v0で転がってきた半径4a質量mの一様な円板が 高さaの水平な段差を、そのふちで接触を失わずに登った。 円板の中心をOとして、段差の縁を点Aとする。 AOが水平となす角をθとし、円板が点Aに接触した瞬間のθの値を θhとする。 この時、円板と段差が常に接触したままであることから、 円板が段差から受ける力のうち、AO方向の分力である抗力Rが 常にR>0でなければならない。また円板が段差を登りきる為には ω>0でなければならない。いずれもθの範囲はθh<θ≦π/2 以上のことから円板が接触を保ったまま段差を登る為にv0が満たすべき 条件を求めなさい。 並進運動の運動方程式と回転運動の回転方程式を立てて それぞれの条件から求めようとしました。 mdv/dt=-Rcosθ 24ma^2dω/dt=-4amgcosθ 24ma^2は円板の点Aまわりの慣性モーメントです。 ここからの計算が分かりません。どうしたらいいんでしょうか。 運動方程式から解くものでもないような気がしてきました。 分かる方教えてください。宜しくお願いします。

  • 振動の力学モデル

    振動(回転系)の運動方程式は、 I(d^2θ/dt^2)+C(dθ/dt)+Kθ=T です。並進系の力学モデルは、振動工学の本でよく見ますが、上式の力学モデルの図を見たことがありません。 Iは円盤、Kはコイルの様な図で表現すればよいと思いますが、Cはどの様な図で表現するのでしょうか? ご存知の方、大変お手数ですが、教えてください。よろしくお願いします。 θ:回転角、I:慣性モーメント、C:回転粘性減衰係数、K:回転ばね定数、T:トルク

  • 力学問題

    ふたつの関数φ(t)およびψ(t)に対し、何らかの定数a,bを用いて φ(t)=aψ(bt)のように書ける場合に「関数φ(t)と関数ψ(t)は相似 である」と言う事にする。 (a)質点Aと質点Bがそれぞれ  m*(d^2x/dt^2)+γ*(dx/dt)+kx=0 M*(d^2x'/dt^2)+γ'*(dx'/dt)+k'x'=0 という運動方程式に従って運動しているとする(両者の間には 相互作用はない)。ここで、x(t)とx'(t)が相似になるためには、 係数のあいだに          γ/√(mk)=γ'/√(Mk') という関係が成り立つ必要があることを示せ。 (b)上記(a)の運動方程式に、さらに周期的な外力が加わった場合 を考える。Aに加わる外力の振動数ωとし、Bに加わる外力の振動 数をω'とする。このとき、x(t)とx'(t)が相似になるためには、 外力の振動数に関してどのような条件が必要か? また別に、LCR直列回路に電圧Vex=V'cosΩtが加わった場合を考え、このときの電荷Qについての(または電流Iについての)常微分方程式をたてる。この電気回路の常微分方程式の解がこの質点系の 運動方程式の解と相似になるための条件を示せ。 この(a)(b)の問題が考えてもどのように解くのか全く分かりません でした。どうか教えてくださいお願いします。 (a)については無次元化がわからないです

  • 球が転がり落ちる問題

    こんな問題がありました。 水平と17°をなす長い斜面上に、質量M、半径rの密度が一様な球が斜面の最大傾斜線に沿って初速度0で滑らずに転がり落ちる場合について、 (1)球の並進運動方程式、(2)重心周りの回転運動方程式、(3)滑らないための条件式を書け。 物理量の記号として、慣性モーメントにはI、並進加速度にはa、角速度にはωを用いる。 この問題なのですが、いろいろ調べても分かりません。どなたか解説をお願いします。

  • 力学の剛体振り子

    力学の剛体振り子についてしつもんです。 画像にもあるように2重の剛体振り子についての質問です。 天井に自由に回転できるAによって固定されています。 一つ目の剛体は一様な棒です。 一様な棒は質量m長さaです。 二つ目の剛体は円板です。 半径R、質量Mとなっています。 円板は棒の端にある自由に回転できるジョイントにつけられています。 A点の鉛直下向きの線からの振り子の棒までの角度をθ、 棒と円板をくっつける自由ジョイントBから鉛直下向きに線をおろし、 円板の直径とのなす角度をφとしています。 振り子のふりはじめはθ=θo φ=φo をふりはじめの角度としています。 棒のA点まわりの慣性モーメントをIoa 円板のB点まわりの慣性モーメントを Ic として、 運動エネルギー、位置エネルギーを求めたいとおもっています。 運動方程式算出を、θ、φ、θ'、φ'、θ''、φ''を用いてとく。 ↓問題点は自分の問題点です・・・・ 2つ解き方があると考えています (1)剛体の運動エネルギーは、重心の運動エネルギー+重心を回転中心とした回転の運動エネルギー より求める方法です。 問題点:しかし、円板の回転による運動エネルギーは、どの角度をつかって(1/2)I ?^2 ?の角度がわかりません。 (2)棒、円板ともに座標を置いて微分、(1/2)mv^2にする方法 問題点:慣性モーメントをもとめているのに使わない・・・・・・ よろしければ導出も含め、おしえていただけると運動エネルギー、位置エネルギー 運動方程式をおしえていただけるとありがたいです。 よろしくおねがいします。

  • 力学の問題を教えて下さい

    周期w0で変化する強制振動 md^2x/dt^2=-kx+asinw0t を場合に分けて調べよ x(t)の式を下さい。共振点とそうじゃない点で分ければいいんですか? 一様な棒が回転せずに落下してきて滑らかな水平面にあたる。衝突直後の角速度が最大になるのは衝突前に棒が水平面とどのような角度にあるときか 運動量と力積、角運動量と角力積の関係を使って解いたんですが違うみたいです 静止している質量Mの剛体振り子の支軸から下方距離lの点に、質量mの弾丸を軸に垂直で打ち込んだところ、振り子は周期T、角振幅a微小振動をはじめた。振り子の重心は軸の下方距離hのところにあり、弾丸を撃ち込んだっことによる重心の変化は無視できるとして、衝突前の弾丸の速さを求めよ 角振幅ってなんですか?振れた角度? Tがわかるので、剛体振り子の運動方程式を使わずにエネルギー保存則だけで解いたんですが v=(M+m)/m√(2gh(1ーcosa)+l^2π^2/6T^2)とでたんですが正しいかわからないです。(次元はあってると思うんですが) どれからでもよいので回答お願いします。

  • 剛体の平面運動

    半径R、角速度ωの円板が水平面上に置くと、ころがっていき、そのときの重心の並進速度が知りたいのですが、dv/dt=2/3Rω^2と出たのですが、ここまでは合ってるのでしょうか?お願いします。

  • 力学の問題です

    図1のように質量M半径Rの密度分布が一様で厚みを無視できる円板が 水平に置かれた中心軸(円板に垂直な方向)のまわりに自由に回転できるように設置されている。 この円板の縁には、質量を無視でき伸長性のない糸がたるみなく巻かれていて 糸の先には質量mの質点が結び付けられている。糸と円板の間にはすべりは生じないものとし 初期の状態では図1(a)に示すように円板は静止しており、糸にたるみがなくかつ糸が鉛直方向 に沿うように質点は台によって支えられている。 次に図1(b)のように円板を回転させないように質点を距離hだけ鉛直上向きに持ち上げる。 その後図1(c)のように質点を支えていた台を瞬時に取り除く。 質点が落下してちょうど糸のたるみがなくなり、かつ張力が生じる直前の円板の中心軸まわりの 角速度をω0、質点の鉛直下向きの速さv0とする。 糸に張力が生じて円板が回転を始めた直後の系を考える。このとき糸にたるみは生じず、 質点は鉛直下向きに運動した。円板が回転を始めた直後の円板の中心軸まわりの角速度ω1、 質点の鉛直下向きの速さv1を求めよ。 という問題なのですが、どういう方針で解けばよいのでしょうか。 円板の回転の方程式と質点の運動方程式を張力Tとして立てたのですが そこからv1ω1を求める手段が分かりません。 あとv1=Rω1 としてよいのでしょうか? 分かる方宜しくお願いします。

  • 物理の質問です。力学です。

    物理の質問です。力学です。 大至急回答お願いします。 併進運動から、回転運動へ運動の形態が変化しても、運動絵寝るげーは保存されます。 仮に質量m、速度vで運動していたものが、慣性モーメントIでの回転運動に瞬時に移行し、運動エネルギが保存されるとしたその角速度は、どのような値になるのでしょうか? 回答よろしくお願いします。

  • 剛体棒の運動方程式

    剛体棒の運動方程式でわからない点があります。 XY平面で長さL、質量M、密度が一様な剛体棒が原点を支点とし振り子運動を行う時、 剛体棒とY軸のなす角度をθとおくと Iβ=(-MgL/2)sinθ      (Iは慣性モーメント、βは角加速度) だと思うのですが、 問いで「重心まわりの回転についての運動方程式をたてよ」とあった場合 Igβ=0     (Igは重心を軸とした時の慣性モーメント) でよろしいのでしょうか? 重心にはモーメントが働いていないと思ってこのように考えているのですが・・ また「重心の並進運動についての運動方程式をたてよ」とあった場合、 M (d^2X/dt^2)=0 M (d^2Y/dt^2)=-Mg でよろしいのでしょうか? 慣性モーメントの計算は割愛しましたが、どなたか御教授して頂ければ幸いです。