• ベストアンサー

複素積分

In=1/2πi∫ c f(z)z^-n-1dz cは積分路でz=exp(iθ)で円周上を正の向きに回る。 f(z)=(2z^2+5z+2)/(2z^2-5z+2)です。 nは任意の整数としたとき複素積分Inはどうなるかわかりません。解き方のヒントを教えていただけたらありがたいです。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

念のため確認しますが被積分関数のf(z)の後ろのz^-n-1はz^(-n-1)ということですよね。 そのつもりでお答えします。 経路が単位円となっていますので、|z|<1の領域にあるすべての特異点の留数の和を求めればよい、ということです。 まず、特異点を探します。z=1/2はnの値に関係なく1位の特異点です。 n<0の場合、特異点は1個だけです。 n≧0の場合、z=0がn+1位の特異点になります。 次に留数を求めます。 z=1/2における留数は簡単に計算できます。 z=0における留数を公式から求めるのは面倒です。 f(z)をz=0の周りでテーラー展開したほうが簡単そうです。z^nの係数が求める留数になります。このテーラー展開もf(z)の式を部分分数に分解してしまえば簡単です。

kakakasi12
質問者

お礼

ありがとうございます。よく理解できました!

関連するQ&A

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分

    z=π/2を中心とした、半径π/2の円周上を始点をz=π、終点をz=0としてπだけ反時計回りに回る積分路をCとして、複素積分∫C zcos(z)dzを求める問題がわかりません。 z=π/2+π/2e^(iθ)と置換してみても、積分を計算することができません。 解き方を教えて欲しいです。ちなみに答えは2です。

  • 複素積分

    複素関数f(z)を、   f(z)=(1-e^(2iz))/z^2 (zはC/{0}の元) とします。 (1)z=0におけるローラン展開 (2)R>0に対して、上半円弧CrをCr={z=Re^(iθ) : 0≦θ≦π}とし、   反時計回りに向きを入れるとき、    lim[R→∞] ∫[Cr] f(z)dz という上記の二問についてですが、 (1)について  e^zのテイラー展開にz=2izを代入し   f(z)=(1/z^2){1-(1+z+(z^2)/2!+…}   =-Σ[n=1→∞] (((2i)^n)z^(n-2))/n!  と強引に計算しましたが、これで大丈夫なのでしょうか? (2)について  z=Re^(iθ)を与式に直接代入して、    lim[R→∞] ∫[Cr] f(z)dz    =lim[R→∞] ∫[0,π] {1-e^(2iRe^(iθ))}/{Re^(iθ)} dθ  として、ここから積分評価をしていきたいのですが、どのようにして考えていけばよいのでしょうか?とりあえず、被積分関数の絶対値を考えてみたのですが、うまくいきません。どなたかアドバイスをいただけませんか? 以上の二問ですが、よろしくお願いします。

  • 複素積分

    下記の複素積分に関する問題がわかりません。 積分路Cは原点を中心とする半径1の円周上とする。 ∫c(z^2+1)/(-4iz^3+17iz^2-4iz)dz また、複素積分の基礎的な知識を確認するのに何かよいサイトがありましたら教えて頂けませんか。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 積分値を複素関数を使って求める

    お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

  • 複素積分について

    関数f(z)およびCについて、複素積分∫Cf(z)dzを求める f(z)=z^2、C:z=z(t)=(1+i)t (0≦t≦1) f(z)=e^z、C:z=z(θ)=2e^(iθ) (0≦θ≦π) どのようになりますか

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。