• ベストアンサー

3×3行列の対角化

A={{-1,2,2},{2,-1,2},{2,2,-1}} を対角化する行列P を求めて、P^(-1)AP を計算して対角化して下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

質問者さんの行列の書き方をするとして A={{-1,2,2},{2,-1,2},{2,2,-1}} I={{1,0,0},{0,1,0},{0,0,1}} 固有多項式f(t)=det(tI-A)=(t-3)(t+3)^2 固有値は、固有方程式f(t)=0より t=3,-3(2重解) t=3のとき  (3I-A){{x},{y],{z]}={{4,-2,-2},{-2,4,-2},{-2,-2,4}}{{x},{y},{z}}   ={{4x-2y-2z},{-2x+4y-2z},{-2x-2y+4z}}   ={{0},{0},{0}}  4x-2y-2z=0,-2x+4y-2z=0,-2x-2y+4z=0  独立な式は2つ。  2x-y-z=0,x-2y+z=0  {{x},{y},{z}}=c1*{{1},{1},{1}}  固有ベクトル:v1={{1},{1},{1}} t=-3のとき  (-3I-A){{x},{y],{z]}={{-2,-2,-2},{-2,-2,-2},{-2,-2,-2}}{{x},{y},{z}}   ={{-2x-2y-2z},{-2x-2y-2z},{-2x-2y-2z}}   ={{0},{0},{0}}  -2x-2y-2z=0,-2x-2y-2z=0,-2x-2y-2z=0  独立な式は1つ。  x+y+z=0  {{x},{y},{z}}={{c1},{c2},{-c1-c2}}=c1{{1},{0},{-1}}+c2{{0},{1},{-1}}  固有ベクトル:v2={{1},{0},{-1}},v3={{0},{1},{-1}} 以上の固有ベクトルから、対角化行列Pは  P={v1,v2,v3}={{1,1,0},{1,0,1},{1,-1,-1}} が得られる。   あとはPの逆行列P^-1を計算して  P^-1AP を求めるだけ。 計算すると  P^-1AP={{3,0,0},{0,-3,0},{0,0,-3}} が求まります。   

eieitaro
質問者

お礼

ありがとうございました

その他の回答 (1)

  • ga2z
  • ベストアンサー率0% (0/1)
回答No.1

Aの固有値をもとめる→P^(-1)AP を固有値表現する。 ででると思います

関連するQ&A

  • 行列の対角化について

    行列Aが与えられていてその行列の固有値、固有ベクトルを求め、Aを対角化せよという問題があったとして、その問題を解くときに まず固有値を求め、固有ベクトルを求めるところまではいいんですが、 対角化するというときに固有ベクトルから行列Pを求め、P-1AP = 対角行列という風にすると思うんですが、この場合P-1APは実際にP-1を求めて計算する必要があるんでしょうか? はじめから対角行列であるということがわかっているように普通に書いてもよいんでしょうか?

  • 行列対角化問題

    3×3行列 A={{2,0,-1},{-2,3,2},{1,0,0}} は、対角化できるかどうか判定しなさい。 また、対角化できた場合は、 を対角化する行列P を一つ求めて、P^(-1)AP を計算して対角化して下さい。 対角化できなかった場合、ジョルダン標準形Jにできる行列Pを一つ求めて、P^(-1)AP を計算してJを求めて下さい。

  • 線形代数 行列の対角化

    行列Aの対角化は P^(-1)AP で計算しますが、Pの逆行列を求めないで計算する方法ってあるんですか?

  • 固有値、対角行列の順

    2 -2 1 -1 3 -1 1 -2 2 といったような3*3行列があって正則行列Pを求め P^-1AP(対角行列)をもてめるのですが。 固有値は1、5で固有ベクトルが求まり、正則行列Pが 求まり、P^-1APもでます。 固有ベクトルが三つ(P1、P2、P3)出ますが、正則行列Pは左からP1、P3、P2みたいに順番はどうでもいいのでしょうか? またPが求まるとP^-1APは求まりますが、 α 0 0 0 β 0 0 0 γ  のようになって計算するとα=1、β=1、γ=5になります。が、これは固有値が並んでいまして、α、β、γの順が違っていても正解なのでしょうか? 例えば、5,1,1とか ご教授願います。

  • 行列の対角化

      ┌1 -2 -2┐ A=│1  2  2│   └(-2) 2  1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が   ┌0 0 0┐ P=│1 0 0│    └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか?

  • 行列の対角化について

    (4 -5) (2 -3) という行列Aがあり、この行列の固有値が2とー1、固有ベクトルが a(5),b(1)  (2) (1) となります。(ただしa,bは0でない任意実数) この行列Aを対角化するときに対角化するのに必要な行列をPであらわすと P=(5 1)    (2 1) とできるとあるのですがこのPを P=(1 5)    (1 2) とすることはできないのでしょうか?

  • 行列の対角化についてです

    次の対角化可能である2つの行列を対角化せよ 変換行列Pと、その逆行列P^-1 も求めよ (1)   1  0 A=   2 -2 (2)   5  -2  -2 B=15  -8  -6   -9  6   4 ご教授お願いします。

  • 行列

    |-1  0  2|   |-1  1  1| |-1  0  2| 行列Aを対角化可能ならば、正則行列Pを求めてP^(-1)APを対角行列にせよ。という問題で、 自分で計算し、 Φ(x)=x(x-1)^2 となって 固有値はx=0,1 ですよね? そしてx=1のとき、W1の基底が1つ、たとえば (1 0 1)t   と (0 1 0)t そしてx=2のとき、W2の基底が2つでてきました。たとえば (2 1 1)t これらをくっつけて、Pを |1 0 2| |0 1 1| |1 0 1| としてさらにP^(-1)をもとめてもP^(-1)APが対角行列になりません! 何回もやったので計算間違いはないはずなのですが、どこがいけないのでしょうか・・・ ちなみに答えはないのですが、基底が3つ出てくるのに対角化できないことってあるのでしょうか?? 確認をおねがいします!

  • 線形代数 行列 対角化

    対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 線形代数 行列の対角化とユニタリー行列について

    線形代数 行列の対角化とユニタリー行列について 行列Aをの固有値a1,a2,.....に対して固有ベクトルをv1,v2,.....とするとAを対角化する変換行列Pは P=(v1,v2,...)となりますよね?このとき対角化された行列は PAP^(-1)とP^(-1)APのどちらですか? 教科書によって違うので混乱しています。 また、Aが対角化可能かどうかは具体的にはどのように判断するんですか? というのも今までエルミート行列しか対角化したことなかったんです。 エルミート行列を対角化する変換行列はユニタリー行列であるという認識は正しいですか? ユニタリー行列の場合変換の際に基底の大きは保存されると思います。よって大きさが変わっていいならユニタリーでなくても対角化できそうなのですが。 一般的には対角化とエルミート行列とユニタリー行列の間にはどんな関係があるのでしょうか? 迷走した質問ですみません。よろしくお願いします。