• ベストアンサー

Gal_Q(x^4+1)がZ_2×Z_2の同型

Gal_Q(x^4+1)がZ_2×Z_2と同型になる理由についてなぜなのかがよくわかりません。 (具体的に言うと、Gal_Q(x^4+1)の構成要素と、その各々の元がZ_2×Z_2の各元にどのように対応しているのかがよくわかりません。) x^4+1=0を計算すると、±(1+i)/√2, ±(1-i)/√2となり、Gal_Q(x^4+1)がQ-同型写像であることと、Z_2×Z_2が{1,α,β,αβ}で構成されるアーベル群であることはわかります。 ※Gal_Q(x^4+1)は体Q上の多項式x^4+1のガロア群 もしもわかられる方がおられれば、お教え頂けないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • misumiss
  • ベストアンサー率43% (24/55)
回答No.1

>x^4+1=0を計算すると、±(1+i)/√2, ±(1-i)/√2となり、 4つのどれかを a とすると, 残りの3つは, -a, 1/a, -1/a, とあらわされます。 1, f, g ∈ G = Gal_Q(x^4 + 1), に対して, f(a) = -a, g(a) = 1/a, とすると, fg(a) = -1/a (ここでは, G × { a, -a, 1/a, -1/a } → { a, -a, 1/a, -1/a } という作用を考え, G から S_4 への準同型写像を定義することで, G を S_4 の部分群とみなしています) G の位数は 4 ですから, G = { 1, f, g, fg } で, 乗積表を作ってみれば, G が Klein の4元群(と同型)であることが, おわかりになると思います。 Z_2 × Z_2 も, 加法群とみなして, 表を作ってみれば, やはり, Klein の4元群と同型です。

graphman2
質問者

お礼

有り難うございます!!! 本当にとても!!!よくわかりました。

関連するQ&A

  • ガロア拡大体とその部分体について

    ガロア群の構造を考えているのですが煮詰まっています。 Qを有理数として、体の拡大Q(√2,exp(2πi/5))/Qについて考えています。(以後√2=x,exp(2πi/5)=z,L=Q(x,z)と書きます。) この時、xの最小多項式がx^2-1,zの最小多項式がz^4+z^3+z^2+z+1となるから、LはQのガロア拡大となり拡大次数は2*4=8。よって、ガロア群の位数も8。ここでガロア群の生成元を考えたいのですが、一つは、τ(x)=-x,τ(z)=zとなるようなτであると思うのですが、もう一つをどのように考えればよいのかわかりません。 (1)z→z^2,z^2→z^3,z^3→z^4,z^4→z^5,z^5→z のように一個ずつずれるような写像 (2)z→z^2となるような写像 (3)その他 何が正解でなぜなのかを教えていただけないでしょうか。5乗根だけでなく、他の円分体のときのガロア群の生成元についての考え方についても教えていただけると幸いです。

  • Gal(L/K)∋σ→σ(α) ∈Xが単射の理由

    「単純代数拡大L⊃K(α)⊃Kの場合、ガロア群の位数に関する不等式について|Gal(L/K)|≦[L:K]が成立する」ことに対する証明問題について考えています。 「環と体の理論(酒井文雄著)p110」には、原始元αのK上の最小多項式をf(x)とし、XをLにおけるfの根の集合としたとき、写像Gal(L/K)∋σ→σ(α) ∈Xが単射であると書かれていますが、この理由がわかりません。 (例えば、簡単な具体例L=C,K=Rのときにはわかります。) もしもおわかりになる方がいらっしゃれば、お教え頂けないでしょうか?

  • 同型であることの示し方を教えてください。

    整数Zと有理数Qが加法群として同型であるかどうかを示したいのですが、 同型であることを示す証明がいまいちできません。 写像をどのように定義すればいいのですか? 写像を定義すればあとその写像が f(ab)=f(a)f(b)であることを示して 全射であることを示せばいいと思うのですが・・ 写像がいまいちわかりません。 あと、R → R*=R-{0} の時の写像もどのように考えればいいのでしょうか?

  • 準同型定理について

    写像f:Z→Z;m→2mは、準同型写像でKerf={0},Imf={2m|m∈Z}であることまでは分かったのですが・・・ これに準同型定理を適用すると、どのような群の同型対応が得られるのですか?? よろしくお願いします。

  • 次の同型を示せ

    加群A,Bに対して Hom(A⊕B,Z)とHom(A,Z)⊕Hom(B,Z) 同型写像をどのように定め、それが同型写像である証明も詳しく教えて欲しいです。 よろしくお願いします。

  • 準同型写像

    加法群としての準同型写像はいくつありますか? (1) Z12→Z14 (2)Z12→Z16 準同型写像はいくつありますか? (1)Z→Z (全射) (2)Z→Z2 (3)Z→Z2(全射) (4)Z→Z8 (5)Z→Z8(全射) (6)Z12→Z5(全射) (7)Z12→Z6 (6)Z12→Z6(全射) 手順も含めて教えてください。

  • 同型の証明です。

    群論の問題なのですが… 整数全体がなす加法群Zに対して、G=Z×Z={ ( a,b ) |a,b ∈ Z } とおき これを成分ごとの加法 ( a , b )+( a' , b' )=( a+a' , b+b' ) により群と見なす。 2元 x = ( 2 , 4 ) , y = ( 6 , 8 )により生成される群Gの部分群Hとし、 写像 φ : G → H を φ(( a , b )) = ( 2a + 6b , 4a + 8b) = ax + by により定義する。ことのきつぎの問いに答えよ。 (1)φは群の同型写像であることを示す。 (2)φによるHの像 K= φ (H) = { φ ( h ) | h ∈ H } はGの部分群であることを示す。 (3)GのKによる剰余群 G / K に対して群の同型 G / K ≅ Z / mZ × Z / nZ がなりたつような自然数 m , n で m が n の約数となるものを求める。 (1)、(2)は示すことができました。 (3)の証明の方法がよくわかりません… できるだけわかりやすく教えていただけるとうれしいです。 よろしくお願いします。

  • 準同型の写像

    巡回群Z/nZから巡回群Z/mZへの準同型が0(ゼロ)写像ただ一つしか存在しない条件は、nとmが互いに素、即ち(n,m)=1であることを示せ。なんですが教えてください、お願いしますm(__)m

  • 同型の質問です

    ある命題の証明の途中で同型を示そうと思ったのですが,いまいちわからなかったので,ご助言いただければ幸いです・ 命題: R-加群の完全列{0}→X→Y→Z→{0](φ:X→Y,ψ:Y→Z)について、次の性質は同値: (1)R-準同型ρ:Y→Xで,ρφ=1xとなるものが存在する; (2)R-準同型μ:Z→Yで,ψμ=1zとなるものが存在する. (1x,1zはそれぞれX,Zの恒等写像) このとき,次の直和分解を得る: Y=φ(X)○+Ker(ρ) = Ker(ψ)○+μ(Z) ~=X○+Z (○+は直和, ~=は同型を表しています.) 前半の同値性は証明できたので,認めることにします. 後半の証明において,テキストでは, Y = φ(X) ○+Ker(ρ) ・・・✽ となり,φは単射,ψは全射であるから, φ(X) ~= X , ・・・(1) Ker(ρ) ~= Y/φ(X)~=Z ・・・(2) を得る. となっていました.(✽までの過程は自力でできたので割愛させていただきます.) (1)に関しては準同型定理から示せましたが, (2)がいまいちわかりませんでした. よろしければご助言お願い致します

  • 代数の問題についてです。

    以下の代数の問題について教えてください 1.Q(√2、√3、√5)=Q(√2+√3+√5)となることを示せ。 2.[Q(√2、√3、√5): Q]をもとめよ 3.√2+√3+√5のQ上の既約多項式(最小多項式)を求めよ 4.ωを x^2+x+1 の根としたときQ(3√2(以下、これは2の3乗根) 、ω)の自己同型写像であって3√2とωを入れ替えるものが存在するか? 5.F⊂B⊂E:体の塔、 B: f(x)∈F[x]のF上の分解体、 E: g(x)∈F[x]のF上の分解体 とする。 このとき、写像Ψ : Gal(E/F) → Gal(B/F) <σ → σ|B> は全射であることを示せ。