• ベストアンサー

極限の問題の解き方について

a >0のとき、lim (a^1/n) = 1(n→∞)を示せという問題を、t= 1/n (t→0)とおいて、 lim (a^1/n) = lim (a^t)= 1 (n→∞,t→0)と解いたのですが、この解き方で合っていますか。間違っている点があったら指摘をお願いします。 また、教科書ではこの問題をa=1 , a > 1 , 0 < a < 1の3通りに場合分けをして、複雑に解いているのですが、それはなぜですか。 どなたか分かる方がいらっしゃいましたらよろしくお願いします。

noname#163628
noname#163628

質問者が選んだベストアンサー

  • ベストアンサー
  • chmist
  • ベストアンサー率57% (4/7)
回答No.1

 発想はあっています。ここでは、公式の確認をしてみます。  n→∞のときのa^nについて、(ただしaを正の定数とする)  a>1のとき∞、0,a,1のとき0、a=1のとき0です。  a=1/2,1,2についてグラフを作成したのでこちらを参照してください(開かなかったらすみません)。  こんなつたない回答でよろしいでしょうか。

noname#163628
質問者

お礼

ありがとうございます!

関連するQ&A

  • 極限の問題の解き方について

    a >0のとき、lim (a^1/n) = 1(n→∞)を示せという問題を、t= 1/n (t→0)とおいて、 lim (a^1/n) = lim (a^t)= 1 (n→∞,t→0)と解いたのですが、この解き方で合っていますか。間違っている点があったら指摘をお願いします。 また、教科書ではこの問題をa=1 , a > 1 , 0 < a < 1の3通りに場合分けをして、複雑に解いているのですが、それはなぜですか。 どなたか分かる方がいらっしゃいましたらよろしくお願いします。

  • 数学 極限の問題について

    (1) lim(n→∞) (1/1+a^2)^n  a != 0 (aは0でない) の極限の求め方 (2)lim(x→1-0) (x/1-x)の極限は -1になると思うのですが、教科書では無限大となっています。  1-x = t とおいています。

  • 極限値の問題です。

    ≪問題≫ (1)lim{12/n[n/3]}(n→∞) (2)lim{a^n+(1+a)^n}^(1/n) (ただし,a>0) (3)lim{1-(1/(2^2))}{1-(1/(3^2))}…{1-(1-1/(n^2))} (2)はガウス記号を用いています^^; 手も足もでません^^; よろしくお願いします。

  • 極限の問題

    以前も質問させていただきましたが、わからないので教えてください。 lim(n→∞)*{a^n+b^n}^(1/n),a>0,b>0の極限を求めよ。この式にはn乗根が入っています。醜くて申し訳ありません。 まずa,bの大小で2通りに場合わけして、はさみうちを利用しそれぞれ「a.bという答え」になりました。 答えはmax{a,b}のようですが、a=bの場合を考えて、単純にlim(n→∞)*{a^n+b^n}^(1/n)をa=bにすると答えは2a=2bになると思いますが、これは模範解答の答えに含まれていません。 lim(n→∞)*{a^n+b^n}^(1/n)=lim(n→∞)*{a^n+a^n}^(1/n) =lim(n→∞)*{2*a^n}^(1/n)=2a nが消える。 何ででしょうか。挟み撃ちのときは小なりイコールのような感じでイコールのときも一括してやっているので裏目に出ませんでした。 以上をよろしくお願いします。

  • 数列の極限についての問題で・・・

    いつもお世話になっています。今 “ 数列{a_n}に対して lim_(n→∞) a_{2n} = lim_(n→∞) a_{2n-1} = α なら lim_(n→∞) a_{n} = α を示せ ” という問題に取り組んでいるんですが、当たり前のような気がするだけで、どうやって示せばよいのか分かりません。 苦し紛れに lim_(n→∞) (a_{2n} - a_{2n-1}) = 0 と変形して、極限の定義通り ∀ε>0, ∃N; |a_{2n} - a_{2n-1}| < ε (n≧N) と書き換えてみました。最後の式には「おっ」と思ったんですが、それ以上はどうしようもありませんでした。 宜しければ、解法へのヒントなど頂けませんでしょうか。 お願いします<m(_ _)m>

  • 極限値の問題です

    以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。

  • 極限の問題なのですが

    lim[n→∞](7^n+8^n)^(1/n) を求めよ。 という問題なのですが、答えが出せなくて困っています。 lim[n→∞](2*8^n)^(1/n)=8 lim[n→∞](2*7^n)^(1/n)=7 なので、おおよその答えは分かるのですが、うまく解くことができません。解法を知っている方がいましたら教えてください。

  • 数列の極限の問題です。

    ◎問題◎ f(x)=lim (n→∞) (x-4)^(2n+1)/1+(x-1)^(2n) を求めよ。ただしxは実数とする。 ◎質問◎ この問題の解答ではx=2/5で 場合分けが必要だとしていますが その説明を読んでも あまり理解できません。 なぜそこで場合分けが必要なのか 噛み砕いて説明してくださるとありがたいです。

  • 極限値を求める問題です

    よろしくお願いします。 以下の問題を解いていたのですが、いまいち自信がありません。 また、(3)の問題の解き方がどうしてもわかりません。 わかる方、ご指導のほど、よろしくお願いします。 【問題】 ()内の関数の定積分と関連されることにより、次の極限値を求めよ、 (1) lim[n→∞] {(1/(n+1) + 1/(n+2) + … + 1/(n+n)} これを適用する→(1/1+x) 自分の答え =lim[n→∞] (1/n){(1/(1+1/n) + 1/(1+2/n) + … + 1/(1+n/n)} f(x)=1/(1+x), 1/n=hとおくと、 lim [n→0] h(f(h)+f(2h)+…+f(nh)) ∫[0→1] 1/(1+x) dx = [log(x+1)](0→1) =log(2)-log(1)=log(2/1)=log(2) (2) lim[n→∞] {(n/n^2 + n/(n^2+1^2)+…+n/(n^2+(n-1)^2)} これを適用する→(1/(1+x^2)) 自分の答え 各項を、n/(n^2+k^2)=1/(1+(k/n)^2)*1/n (k=0,1,…,(n-1))と表す。 次に、n→∞の極限に移行して、 lim [n→∞] Σ 1/(1+(k/n)^2)*1/n =∫[0→1] 1/(1+x^2) dx = [arctan(x)](0→1) =[arctan(1)]-[arctan(0)]=π/4-0=π/4 (3) lim[n→∞] 1/(n^(a+1)) Σ[k=1→n] k^a これを適用する→(x^a (a>0)) 自分の答え ??? 以上、ご指導のほど、よろしくお願いします。

  • 数列の極限を求める問題です。

    数列の極限を求める問題です。 あまりに分からないのでどなたか助けていただけないでしょうか? ------------------------------------------------------------------------- 問 f(x) = log(1+x)    (x > 0)とする。 (1)t≧1/3のとき、1/(t+1) < f(1/t) < 1/(t+ (1/3)) が成り立つことを示せ (2) cはc≧1/3を満たす定数とするとき、数列 {a[n]}[n=1~∞] を a[1] = f(1/c) , a[n] = f(a[n-1])    (n≧2)    により定める極限値 lim[n→∞] {(log a[n])/log n} を求めよ ------------------------------------------------------------------------- (1)は解けたのですが(2)が分かりません。 ですので (1) が解けたとして (2) を求めていただけたらと思います。 よろしくお願い致します。