• ベストアンサー
  • 困ってます

数列の極限を求める問題です。

数列の極限を求める問題です。 あまりに分からないのでどなたか助けていただけないでしょうか? ------------------------------------------------------------------------- 問 f(x) = log(1+x)    (x > 0)とする。 (1)t≧1/3のとき、1/(t+1) < f(1/t) < 1/(t+ (1/3)) が成り立つことを示せ (2) cはc≧1/3を満たす定数とするとき、数列 {a[n]}[n=1~∞] を a[1] = f(1/c) , a[n] = f(a[n-1])    (n≧2)    により定める極限値 lim[n→∞] {(log a[n])/log n} を求めよ ------------------------------------------------------------------------- (1)は解けたのですが(2)が分かりません。 ですので (1) が解けたとして (2) を求めていただけたらと思います。 よろしくお願い致します。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数153
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ちょっと条件使いきってないから自信ないですが・・・ (2)1/(c+1) < f(1/c)=a[1] < 1/(c+ (1/3)) <1/c  ここでf(x)は単調増加関数なので  a<bにおいてf(a)<f(b)  これより  f(1/(c+1))<f(a[1])=a[2]<f(1/c)=a[1]  また1/(c+2)<f(1/(c+1))より  1/(c+2)<a[2]<a[1]  となるので1/(c+k)<a[k]<a[k-1]を帰納法で証明して  (1/(c+k)/log k)<(a[k]/log k)<(a[1]/log k)  k→∞ではさみうち使って0収束かな・・・

共感・感謝の気持ちを伝えよう!

質問者からのお礼

遅くなってすいません。 t≧1/3は(1)の関係を使えば,条件使ってることになるし 大丈夫だと思います。 1/(c+2)<a[2]<a[1]のところは 1/(c+2)<a[3]<a[2]<a[1]ということですよね。 非常に分かりやすい解答ありがとうございました。 助かりました。

関連するQ&A

  • 数列の極限について。(ε-δ)

    以下の2つがしめせません・・・ 1.lim[n->∞]((log n)^k)/n=0   (k≧0) 2.lim[n->∞](n!)^{1/n}=∞ 1.はlogの発散は遅いわけだから、極限値が0になることはわかるのですが、なかなか上から抑えられません。 2.もlim n^(1/n)=1は1+rと適当において二項定理でばらしたときにn^2が出てくる項でうまくおさえて説明できるので、その方法の改編で下から適当な定数・・・という感じでできそうに思うのですが、これまたうまくできません。 どなたか教えていただけませんでしょうか・・・。

  • 数列の極限と関数の極限の違い

    質問 問題集(Focus GoldIIIC 啓林館)に lim[n→∞]n^2-n+2/2n^2+3は、数列の極限というタイトルで分類されていますが、 lim[x→∞]6x^2-7x-5/x^2+1は、関数の極限というタイトルで分類されています。 数列の極限と、関数の極限との違いは何ですか? 下記の私見の結論に至ったのですが、この考えで合っていますか。高校生向けの説明をお願い致します。 私見 数列の極限は関数の極限の1つである。関数の極限においては、変数に全ての実数をとりうるが、数列の極限は変数が自然数という特殊な場合であり、変数には自然数しかとれない。 それ故、lim[n→2]n^2-n+2/2n^2+3のように、nが定数に近づくときの極限値を求めよ、という問題はありえない。

  • 数列の収束と極限の問題

    数列の収束と極限の問題 はじめまして。最近数学を少し勉強し始めた者です。 頭の出来が良くない故、また独学故に多く質問させて貰うかもしれませんがよろしくお願いします。 a[1] = root(2), a[n+1] = root(2a[n])で定義される数列{a[n]}が収束することを証明し、極限値lim a[n] を求めよという問題なのですが、分かりません。 収束は、ダランベールの判定法を使おうと思い、lim a[n+1]/a[n] = lim root(2a[n])/a[n] = lim root(2/a[n]) まで求めたのですが、これが1より小さいことが分かりません。 極限値のほうは全然です。 どなたかご助言お願いします。

  • 極限です。pert2・・・・

    数列sin(^n)θの極限をもとめよただし-π/2≦θ≦π/2。 第n項が次の式で表される数列の極限を調べよ。 {r^(2n)-2^(2n+1)}/{r^(2n)+4^n} {a^(n+1)+b^(n+1)}/{a^(n)+b^(n)}      ただしa,b共に正の定数 次の無限級数の収束発散を調べなさい。 ∞ Σ2/{√(n+2)+√n} n=1 |x|<1/2のとき無限級数の和を求めよ。 1+3x+7x^2+15x^3+・・・・・+(2^(n)-1)x^(n-1)+・・・ lim[√{(1/x)+1}-√{(1/x)-1}]  の極限値を求めよ。 x→+0 x→∞のときf(x)=√(x^2 +1)-axが収束するような正の定数aの値とそのときの lim f(x)を求めよ x→∞ 以上です。おねがいします。 何度もごめんなさい。

  • 数列の極限について

    数列の極限が理解できませんので、 以下の問題の解答、解説をお願いいたします。 数列の極限を調べ、収束する場合は極限値ももとめたいです。 (1)n^2/(5n+1) (2)√(n+1)-√n また以下の極限値の求め方がわかりません。 (1)(2x^2 +3)/(4x-1) (2)x/√(x^2 +4)-2 よろしくお願いします。

  • 数列・関数の極限について

    俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか?   数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか?   数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。

  • 数III極限

    以下の2つの問題でわかるものがあれば教えてくださいm(__)m 次の極限値を求めよ。 問1 lim(x→∞) (3x-1)sin{log(x-2)-logx} 問2 lim(n→∞) (1-1/2&#178;)(1-1/3&#178;)・・・(1-1/n&#178;) よろしくお願いします。

  • 1/√1+1/√2+…+1/√n-2√nの極限

    0<p<1とします。 lim[n→∞]{Σ[k=1、n])1/k^p - n^(1-p) / (1-p) } の極限値について知られてることはあるのでしょうか。 例えば、p=1/2とすると、 lim[n→∞]{Σ[k=1、n])1/√k - 2√n} の極限値について知られてることはあるのでしょうか。 p=1のときに相当する式は、 lim[n→∞]{Σ[k=1、n])1/k - log(n)} で、オイラーの定数γです。

  • 数列の極限について

    以下のような問題で、悩んでおります。 どうか、ご教授お願いいたします。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 各自然数 n に対して、 a_n = (n ! / n^n) とおく。 このとき、次の各問に答えよ。 (1)0 < a_n ≦ 1/n (n=1,2,3,・・・)を示せ (2)数列{a_n}の極限値を求めよ ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー (1)は、n=1,2,3と順に計算してみて、明らかなことがわかったのですが、どのように記述すべきかで悩んでおります。 (2)は、lima_n の値は0と思うのですが、数列{a_n}となると、どのように計算をすればよいのか悩んでいます。 どうぞよろしくお願いします。

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)