• ベストアンサー

数字の件で

2m∧2 = n∧2 ・・・(1)とする。 ※m,nは自然数 m,nを素因数分解した時の素数の個数を それぞれs,tとすると、(1)式を素因数分解 した時の素数の個数は、 2*s+1,2tになる。・・(2) という、定理があるのですが、 どうやって(2)式が導かれる のかわかりません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

2m^2 を考えてみましょう。 mを素因数分解したときの素数の個数をsとしたわけです。2乗するのだから、素因数分解したときの素数の個数はその2倍になりますね。 例 m=2*3*5 (3個)  m^2=2*3*5*2*3*5 (6個) なので、2m^2を素因数分解したときの素数の個数は、先頭の2も素数だから2s+1個あると言っているわけです。定理でも何でもありません。 さて、n^2の方はというと、nを素因数分解したときの素数の個数をtとしたわけですから、n^2を素因数分解したときの素数の個数は2tです。 で、2m^2=n^2 だとすると、左辺、右辺を素因数分解したときの素数の個数も等しくなくちゃいけない。 ところが、 2s+1は奇数で2tは偶数なので、ありえない。で、つらつら考えてみると、そもそも2m^2=n^2なる自然数m,n(普通は0は含めません) はないということを証明するための過程の一部かと思われます。

その他の回答 (1)

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

 m=0, n=0の場合には   2m^2 = n^2 が成立ちますが、このときm, nは素因数分解できません。m, nが0でない自然数である場合、両辺の平方根を取ると   (√2)m = n すなわち   √2 = n/m ですから、この式は「√2は有理数だ」ということを主張しています。しかしこれは偽の命題です。  つまり、話の前提条件がそもそも誤りです。

関連するQ&A

  • 素因数分解の一意性?????

    m,n,p,qをすべて互いに素な自然数とした時に、 2^n・p^m=q^mにおいて、 素因数分解の一意性より、qは2の倍数である。 素因数分解の一意性ってどういうことなのでしょうか?

  • 素因数分解の証明問題

    素因数分解の証明問題 証明方法がわかりません。 自然数の素因数分解をn=(P_1)^e_1(p_2)^e_2・・・(p_r)^e_rとする。このとき、 φ(n)=n{1-(1/p_1)}{1-(1/p_2)}・・・{1-(1/p_r)}となることを示せ。 ただし、自然数m,nに対して、gcd(m,n)=1ならば、φ(mn)=φ(m)φ(n)であることを用いよ。 よろしくお願いします。

  • 自然数の数列

    自然数からなる数列a[1],a[2],a[3],...,a[n],...で、 ・n→∞ のとき ω(a[n])→∞ ・任意のnについて φ(a[n]) | a[n]^2 をどちらもみたすものの例を教えて下さい。 ω(m)は自然数mの素因数の個数、 φ(m)はm以下でmと互いに素な自然数の個数、 k | m は自然数mが自然数kで割り切れる、 を表しています。

  • 余りと、余りの2乗の余りが一致する個数

    まず、自然数Nで割ります。 すると、その余りは0~N-1までのN通りあります。 次に、その余りを二乗します。 そして、それぞれを再びNで割ります。 そのとき、余りが、前の余りと同じになる個数が2のM乗あります。 そのMは自然数Nを素因数分解したときの素数の種類の個数と一致します。 例えばN=10(=2×5)のときは二つの余りが一致するのは0、1、5、6の、4個存在します。これはNの素数の種類が2と5であるため、2の2乗と一致します。 しかし、なぜこのようなことがいえるのか、わかりません。また、もしかしたら、これはすべてにおいてはいえないかもしれません。 ですから、この証明、もしくは反例を教えていただけたらと思います。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 中3数学です

    受験対策の問題集で、どうしてもわからない問題があったのでお願いします。 問. nは250以下の自然数で、n/21をこれ以上約分できない分数にしたとき、分母が3になる。また、14nはある自然数の2乗になるという。このようなnをすべて求めなさい。 解答・解説 素因数分解を利用して考える。 n=14×m^2 とすると、 n/21がこれ以上約分できない分数になるのは 21=3×7 より、mが3の倍数でないときである。 m=1、2、4 のとき n=14、56、224 何度読んでも、n=14×m^2 からわかりません。 14×n=m^2ではないのでしょうか? 詳しく教えていただきたいです。

  • An<An+1の証明

    An=(1+1/n)^n。この式を2項定理で分解して比較すると、(1)An<An+1がいえると教科書に書いてあります。 nは自然数です。 2項定理で分解してみましたが、よくわかりませんでした。 (2)(1+1/n)^n≦1+1/1!+1/2!+......+1/n! (3)k!≧2^k-1(k=2,3,......) この三つの式を証明できる方は教えていただけますでしょうか? よろしくお願いいたします。

  • 数学Iのしつもんです

    nを自然数とし、10のn乗は200!をわりきる。このようなnの最大値はなにか? という問題で解には10=5×2だから200を素因数分解したときの5の個数である。 とかいてありました。その理由が良くわかりません。なぜ2は関係ないのですか? 長時間かんがえても根本的にわからないのでくわしく教えてください。

  • n^2-20n+91が素数となる整数nの値・・・

    すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。