• ベストアンサー
  • 困ってます

n^2-20n+91が素数となる整数nの値・・・

すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数369
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

例えば、6は2でも割り切れるし、-2でも割り切れる。 P=1×Pでもあるし、P=(-1)×(-P)でもある。 そんだけのことです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答有難うございました。 途中経過のnの値8,6,14,12がでてきますが、 n=6のとき、題式=(6-7)×(6-13)=(-1)×(-7)=7の意味が理解できました!!! 有難う御座いました。

関連するQ&A

  • 素数の素因数分解

    素数(例えば17)の素因数分解について  (1)すでに素因数分解は終わっている (17の素因数分解は17)  (2)素因数分解はできない のどちらの見解が正しいですか?

  • 素因数分解について

    X=√4,840,000 を素因数分解?? で解く場合、100*2*11=2,200 となると思いますが、素数の100を1000にしては駄目ですか? そもそも、素因数分解のルールが理解出来ていません。 素因数分解の簡単なやり方を分かり易く教えて下さる方、宜しくお願いいたします。 因数分解は方程式なので、取っ付きにくいイメージがあります。

  • 100以下の素数を全て覚えるべきでしょうか

    100以下の素数は25個ありますが、 これらの25個の素数を全部覚えていると、 素因数分解が得意になれると聞いたのですが、 これらの25個の素数を全部覚えるべきなのでしょうか。 数学が得意な人は全部覚えているのでしょうか。

その他の回答 (1)

  • 回答No.2

Pが素数なら、素因数分解はできないので、1×Pしかないけど、(-1)×(-P)もありうるということです。だから、n-1=1のみならず、nー1=-1の時もありうる。同様に、nー13=1 or n-13=-1。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

-1は素数でないので、混乱してました。 有難う御座いました。

関連するQ&A

  • 数学の参考書、本質の研究の記述に間違いはありますか

    本質の研究I・A P.31 因数分解のセクションにおいて、「どんな整数も必ず素因数分解ができる」という記述がありました。 しかし、整数には負数が含まれ、素数の定義は1と自分自身以外に約数を持たない1以外の自然数の筈なので、負数を自然数のみで表すことは不可能と考えました。 この場合上記の記述は間違いで、「どんな自然数でも必ず素因数分解ができる」が、著者が本来書きたかった内容ではないでしょうか? 他にも、この参考書に誤った記述がある部分があれば教えてください。

  • 中学数学を教えて下さい

    今、問題集を解いているのですが解説を読んでも疑問が残ってしまっています。もしかしたらすごく基本的な部分かもしれないのですが、考えても考えてもわかりません。二問あるのですが、どちらかだけでもいいのでお力添えいただければ嬉しいです。 1.ある素数pに72を加えた数を素因数分解すると13×q(ただしqは素数)となる。   またpをこのqで割ると5余るという。   このとき、pの値で考えられるものをすべて答えなさい。 (解説)  p+72=13×qより、p=13q-72  pをqで割った時の商をaとすると、  p=aq+5  よって、13q-72=aq+5  (13-a)q=77                77=7×11、qは素数だからqは7か11   q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  19,71は素数だから、問題に適している。     この解説の  (13-a)q=77   77=7×11、qは素数だからqは7か11  q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  の部分なのですが、  (1)77が11×7なのは分かるのですが、なぜそのどちらかがqの値になるのか  (2)(13-a)は無視してしまっていいのか  (3)7と11を当てはめて計算するとき、aはどこにいってしまっているのか  など、全体的によくわかっていません。(1)~(3)を無視してもいいので、回答頂けると嬉しいです。 2,自然数nに対して、nの約数の個数をf(n)で表す。例えば、f(7)=2、   f(8)=4,f(9)=3である。   自然数aについて、f(a)=6のとき、f(aの3乗)の値をすべて求めなさい。  解説  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  a=pxpxpxpxpのとき、axaxa=pxpxpxpxpxpxpxpxpxpxpxpxpxpxp(pの15乗)  になるから、  f(axaxa)=15+1=16  a=pqxqのとき、axaxa=pxpxpxqxqxqxqxqxq となるから  f(axaxa)=(3+1)×(6+1)=28  この解説の  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  の部分なのですが、なぜこうなるのかがわからなく、結果的に全部よくわかりません。  頭が悪くて申し訳ないのですが、解説をお願い致します。     

  • 数I整数の性質の問題です

    「10!を素因数分解せよ。」の問題の解説で、素数2の個数は、ガウス記号を用いて[10/2]+[10/2^2]+[10/2^3]=8とあります。この意味がわかろません。解説、よろしくお願いします。(出典:FOCUSGOLD数I+A)

  • javaで整数nを入力し、それが素数かどうか判断するプログラムを拡張し

    javaで整数nを入力し、それが素数かどうか判断するプログラムを拡張して、入力した数を素因数分解するプログラムを作成したしたいのですが、まったくわかりません。誰か教えてください。お願いします!!

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 整数の問題です。(10^n)+1は素数か?

    趣味数学なので特に至急というわけでもございませんが、 私はすでにギブアップなのでどなたか助け舟お願いします。 聞けるような人もいないのです。 自分で作って解けなかった問題です。 Q. 1000…001のうち素数であるものを求めよ. 10^n+1として、ほとんどは因数分解できました。 下の方に書いておきます。 残るは、nが2のべき乗のときだけなのです。 10^(2^m)+1だけは分解の手段が思いつきません。 もしかすると素数となる条件などないのかもしれません。 皆様のお知恵拝借、よろしくお願いします。 Prf) (未完)  10^n + 1 … (*)  (n=1,2,…) case1) nが奇数の場合  x^n+1 = (x+1)(x^(n-1)-x^(n-2)+…+1)  上のように因数分解できる  上にx=10を代入すれば、この場合(*)が11を因数に持つことがわかる  ∴ n=1のとき(*)は素数、nが3以上の奇数の時(*)は素数でない case2) nが偶数、かつ奇数を因数に持つ場合(n=even∧n≠2^m)  このとき、奇数oと偶数eを用いて、n=eoと表せる  よって  x^n = x^eo = (x^e+1)(x^e(o-1)-x^e(o-2)+…+1)  上のように因数分解できる。ただしe≧2、o≧3、n≧6  上にx=10を代入すれば、この場合(*)が10^e+1を因数に持つことが分かる  ∴n=even∧n≠2^mのとき、(*)は素数でない case3) n=2^m の場合(m=0,1,2,…)  10^1 + 1 = 11 … prime (case1)  10^2 + 1 = 101 … prime  10^4 + 1 = 10001 = 73*137 … notprime  10^8 + 1 = 100000001 … 17で割れる … notprime    :    :    ? (primeが11と101のみなら個人的にうれしい)

  • 素因数分解でわからない問題があります。教えていただ

    けますでしょうか。 勉強していて、下記の問題がどうしてもわかりません。 解答はついているのですが、考え方がわかりません。 教えていただけないでしょうか? 問い 56にできるだけ小さい自然数をかけて、ある整数の二乗にしたい。どんな数をかければよいか? 素因数分解はできるのですが(2の3乗X7)、その後の考え方がわかりません。 ちなみに答えは2X7=14 です。 解説に、56=2の3乗x7=2の2乗x(2x7) よって、2x7=14とありますが、 この解説がまったく理解できません。 2x7=14が何を意味するのかがわかりません。 どう考えればよいのでしょうか? 同じく 360を自然数でわって、ある整数の2乗にしたい。どんな数でわればよいか? という問いも、素因数分解から先の考え方がわからず、解けません。 (答え10,40,90,360)。 どなたか 解き方(考え方)を教えていただけますでしょうか。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 整数の問題 1から30までをの自然数の積をPとする。Pを素因数分解した

    整数の問題 1から30までをの自然数の積をPとする。Pを素因数分解した式を           p=2^a×3^b×5^c×7^d×・・・×29        と表すときa,b,c,dそれぞれの値を求めよ。  問題をどう解いていくのか、わかりません。誰か教えていただけないでしょうか。 よろしくお願いします。

  • 小5算数 整数の性質

    どの程度まで扱うべきだと思いますか。以下私案: 1 約数と倍数:偶数と奇数,約数と倍数の意味,倍数の見分け方 2 素数と素因数分解:素数,素因数分解 3 最大公約数とその利用:2数及び3数の最大公約数とその利用 4 最小公倍数とその利用:2数及び3数の最小公倍数とその利用 5 2つの整数とその最大公約数・最小公倍数との関係