• ベストアンサー
  • すぐに回答を!

数II・B 平面ベクトル 解答解説お願いいたします

便宜上、ここではベクトルOAをOA#と表記いたします。 回答者様は回答する際、ご都合の良いように表記してくださって構いません。 平面上のベクトルOA#, OB#, OC#, OD#, OE# が, 次の条件を満たすとする。 2OA#+4OC#=3(OB#+OD#), 2OA#+OC#=3OE# (1) 四角BCDEはどんな四角形か。 (2) 四角形BCDEがひし形になるための条件を OA#, OB#, OC# を用いてベクトルの内積の形で書け。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数178
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#158987
noname#158987

(1) 与式2つを引いてまとめると、 OC#+OE#=OB#+OD# 両辺を2で割るとよく分かるが、 これはCEとBDの中点が等しいことを示している。 よって、平行四辺形 (2) ひし形になるには対角線のベクトルの内積がゼロになればよい。 (OC#-OE#)・(OB#-OD#)=0 これに、 OE#=(最初の2式から計算してみてね。) OD#=(最初の2式から計算してみてね。) を代入すると、 (OA#-OC#)・(OA#-3OB#+2OC#)=0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難うございます!非常に助かりました。

関連するQ&A

  • 【至急】数学B ベクトル

    参考書なども見てみたのですがだめでした… わかる方教えてください! (問題) 平面上に互いに異なる3点 O、A、Bがあり、それらは同一線上にないものとする。 OA=2、OB=3とする。 ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとし、その内積を ベクトルa・ベクトルb=t とおく。 ∠OABの二等分線と線分ABとの交点をCとし、直線OAに対して対称な点をDとする。 (1) ベクトルODをt、a、bを用いて表せ。  (2) ベクトルOC⊥ベクトルODとなるとき、∠OABとOCを求めよ。 よろしくお願いします!

  • ベクトルの問題です。解答よろしくお願いします。

    四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。

  • ベクトル

    △OABにおいてOA=2、OB=3、∠AOB=60゜とする A、Bから対辺に下ろした垂線の足をそれぞれC、Dとし、ACとBDの交点をE、OEとABの交点をFとする (1)OEベクトルをOAベクトルとOBベクトルで表せ わからないのは、 ODの長さが1.5、OEベクトル=tOAベクトル+(1-t)OCベクトル というところです 教えてください

  • 至急!!数学ベクトル教えて下さい!!

    半径1の円Kに内接する正三角形ABCがあり、線分BCを1:3に外分する点をD、直線ADとKとの交点のうちAと異なる点をEとする。Kの中心をOとし、OA(→)=a(→)、OB(→)=b(→)とするとき 次の問に答えよ。 (1)OC(→)、OD(→)をそれぞれa(→)b(→)を用いて表せ (2)OE(→)をa(→)b(→)を用いて表せ (3)四角形AEBCの面積を求めよ ※ベクトルは、(→)であらわしています。*例*ベクトルOA  OA(→) *解答* (1)OC(→)=-a(→)-b(→)   OD(→)=1/2a(→)+2b(→) (2)5/7a(→)+8/7b(→) (3)27/28√3 解法がわかりません(><) 明日、みんなの前で解き方を説明しないといけないんです(><) どなたか、解ける方、至急お願いします!

  • 高校ベクトルの問題

    OA=4,OB=3,AB=6である三角形OABがあり、その重心をGとする (1)ベクトルOAとベクトルOBの内積をもとめよ (2)線分OGの長さを求めよ (3)点Gを通り、直線OGに垂直な直線と直線OA,OBの交点をそれぞれD,Eとする (i)ベクトルOD=sベクトルOA、OE=tベクトルOBとなる実数s、tの値を求めよ (ii)DG:GEを求めよ。 わかりやすくお願いします。

  • 空間ベクトルの証明問題です。

    「四角形ABCDを底面とする四角すいOABCDは、ベクトルOA+ベクトルOC=ベクトルOB+ベクトルODを満たしており、0と異なる4つの実数p、q、r、sに対して4点P、Q、R、SをベクトルOP=pベクトルOA、ベクトルOQ=qベクトルOB、ベクトルOR=rベクトルOC、ベクトルOS=sベクトルODによって定める。 このとき、P、Q、R、Sが同一平面上にあれば 1/p + 1/r = 1/q + 1/sが成り立つことを示せ。」 という問題です。ここまで解答したのですが、まだ欠けているような気がするので…ご指摘お願いします。 (ベクトルを省略させていただきます) 題意より、OA-OB=OD-OC よってBA=CD また、OA-OD=OB-OC よってDA=CB したがって、四角形ABCDは平行四辺形 P、Q、R、Sは同一平面上にあるので、四角形ABCD∽四角形PQRS よって、OA+OC=OB+ODより、 1/pOP+1/rOR=1/qOQ=1/sOS したがって、1/p+1/r=1/q+1/s

  • ベクトルの証明がわかりません

    この図においてODベクトルをxベクトル、OEベクトルをyベクトル、OFベクトルをzベクトルとおきます。(1)OA'ベクトルOB'ベクトルOC'ベクトルをxベクトル、yベクトル、zベクトルで表しなさい (2)A'B'ベクトルの二乗=(OB'ベクトル-OA'ベクトル,OB'ベクトル-OA'ベクトル)に(1)の結果を代入し、A'B'ベクトル=B'C'ベクトル=C'A'ベクトルを証明しA'B'C'が正三角形であることを証明しなさい (3)(OAベクトル,OBベクトル)、(OBベクト,OCベクトル)、(OCベクトル,OAベクトル)を計算してcos∠AOB 、cos∠BOC、cos∠COAの値から∠AOB、∠BOC、∠COAを求めなさい 一生懸命考えたのですが、どうしてもわからないので、解いてほしいです。よろしくお願いします。

  • ベクトルの解説早めにお願いします

    高校2年生です。 塾の課題の内容なのですが、 4つの面が合同な三角形からなる四面体OABCにおいて、OA=√3 OB=√3 OC=√2とし、点Oから三角形ABCに下ろした垂線の足をRとする。 また、OA=a OB=b OC=c(ベクトルは省略しています)とおく。 1内積a•b ,b•c, c•aを求めよ 2,ARをa,b,cを用いて表せ 3,線分ORの長さを求めよ 参考書などで類題を探したり考えてみましたが、ベクトルは苦手なのでよく分かりません… 出来れば明日までに 解説をよろしくお願いします(>_<)

  • 至急解答願います!! 数学のベクトルです。

    数学の問題を教えてください… 0<θ<π/2とする。座標平面上に4点A(1,0), B(cosθ,sinθ),C(cos2θ,sin2θ),D(cos3θ,sin3θ)をとり、ベクトルa=ベクトルOA,ベクトルb=ベクトルOB,t=cosθとおく。(1)ベクトルOC,ベクトルODをベクトルa,ベクトルbおよびtを用いて表せ。 (2)2直線AB,CDの交点をEとするとき、ベクトルOEを、ベクトルa,ベクトルb,およびtを用いて表せ。 (3)ベクトルOEの大きさをtを用いて表せ。 の三問です。 出来るだけ早めにお願いします ⤵

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。