• ベストアンサー

対偶について

整数aについて、命題”a^2が3の倍数ならば、aは3の倍数である”について、元の命題が真であることの証明方法についてわかりません。 これは合同式を利用するそうですが、よくわかりません。 これはどのように考えるのでしょうか? すいません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

boku115さん、こんにちは。 >整数aについて、命題”a^2が3の倍数ならば、aは3の倍数である”について、元の命題が真であることの証明方法についてわかりません。 「対偶について」という質問テーマからすると、 boku115さんは、この対偶を取ったものを証明すればいいのだな、と気付いておられるんですね? 実は、そのとおりなのです。 ある命題「p→q」(pならばqである)を証明するには、この対偶「¬q→¬p」(ノットqならばノットpである) を証明すればよいのです。 これを使えば、もともとの命題は a^2が3の倍数ならば、aは3の倍数である p:a^2が3の倍数である q:aは3の倍数である として、p→qですから、この対偶は ¬q:aは3の倍数ではない ¬p:a^2は3の倍数ではない ¬q→¬p を証明すればいいことになりますよね? ここまでくれば、あとは簡単です。 「aが3の倍数でない→a^2もまた3の倍数でない」 を証明すればいいのですが >これは合同式を利用するそうですが、よくわかりません。 合同式は、ある数で割った余りで分類するやり方です。 たとえば、3で割って余りが1のものは、 1 mod 3 のように表します。 しかし、これは高校では扱わないので、合同式の考えですが 普通に文字で置いてみたほうがいいと思いますよ。 aが3の倍数ではない、ということから、 a=3m+1または a=3m+2 と置けます。これは、いいですよね?(3で割って商がm,余りが1または2です) a=3m+1のとき、 a^2=(3m+1)^2=9m^2+6m+1=3(3m^2+2m) + 1                   ↑      となって、やっぱり1だけ余ってしまう a=3m+2のとき、 a^2=(3m+2)^2=9m^2+12m+4=3(3m^2+4m+1) + 1                     ↑      となって、こちらも3で割り切れない ということから、どちらにしてもa^2は3で割り切れません。 ということで ¬q:aは3の倍数ではない ¬p:a^2は3の倍数ではない としたとき、 ¬q→¬p が証明されたので、この対偶の p→q”a^2が3の倍数ならば、aは3の倍数である” は真である、ということが証明できるのです。 頑張ってください!!

その他の回答 (1)

  • liar_adan
  • ベストアンサー率48% (730/1515)
回答No.1

勝手に補足すると、 命題「a^2が3の倍数ならば、aは3の倍数である」を 対偶を使って証明するために、 「aが3の倍数でないならば、a^2は3の倍数ではない」 を証明したいがやりかたがわからない。 ということですね? 「aが3の倍数でない」場合は、 a = 3k + 1 か a = 3k + 2 のどちらかになります。(kは整数) それを2乗して、3で可能なだけくくれば、何が残るかな?という問題です。 やってみてください。

関連するQ&A

  • 対偶による命題

    整数aについて、命題(a^2が3の倍数ならば、aは3の倍数である)が与えられている。 (1) 元の命題が真であることを証明する方法がわかりません。 これは、合同式をつかうそうなのですが、合同式についてよくわかりません。 誰か、お願いします

  • 対偶を用いた証明です

    対偶を用いた証明です 自然数a、b、cがa^2+b^2=c^2を満たすとき、a、bのうち少なくとも1つは3の倍数である という問題なのですが、 解答が次の通りで 全く理解出来ませんでした(;_;)… aが3の倍数でないとき 実数Kを用いてあらわすと a^2=3k+1 bも同様にして 実数mを用いてあらわすと b^2=3m+1 a^2b^2=3k+1+3m+1    =3(k+m)+2 k+mは実数であるので c^2を3でわったあまりは 0または1であるので a^2b^2≠c^2 対偶が真であるので 命題も真である なのです、、 私にはさっぱりでした どなたか解説お願いします!

  • 対偶が正しいのは経験的なものですか?

    間違っている可能性がありますが、数学的に正しいと言われているのは、種類は二つあると思っていていまして、証明はできないが経験的に正しいものと、証明ができ、完全に正しいと言えるものです 証明はできないが経験的に正しいものの例としては、偶数 * 偶数を一つ一つ計算して、正しいと言えるかどうかを判断されているものです 2*2 =4 6 8 10 12 と何度計算し直しても、偶数になりますが、これは完璧に正しいものとは言えません なぜなら、偶数に当てはまる数を全て計算したわけではないので、命題 偶数 * 偶数=偶数が絶対に真であると言えないからです(私は、例としてこれを出しただけで、偶数*偶数を証明したいわけではありません) 証明ができ、完全に正しいと言えるものの例として、定理と言われているものです 質問タイトルの”経験的なもの”というのは、前述で説明した”証明はできないが経験的に正しいもの”という意味です この質問をしたところ、” 経験的ではありません 元の命題とその対偶の両方の真理値表を書いてみればよいです。” と返ってきましたが、この元の命題をAとすると、命題Aと命題Aの対偶の真偽が一致しているというだけで、全ての命題で正しいとは言えないので、対偶が正しいのは経験的と言えます

  • 対偶による証明

    (問題) kを整数とするとき、akをbで割った余りをr(k)で表す。k、lをb-1以下の正の整数とするとき「k≠1ならばr(k)≠r(l)」であることを示せ。ただし、aとbは互いに素な整数である。 (解説) 元の命題の対偶を取ると「r(k)=r(l)ならばk=l」となりこれを証明する。ak、alをbで割ったときの商をp、qとすると、 ak=bp+r(k)…(1) al=bq+r(l)…(2) (1)-(2)より a(k-l)=b(p-q) ここで、aとbは互いに素であるから、k-lはbの倍数である。 また、k、lはb-1以下の正の整数であるから 0<k<b、0<l<b よって、-b<k-l<b ゆえにk-l=0であるからk=l したがって元の命題は証明された。 なんですけど… ここで、aとbは互いに素であるから、k-lはbの倍数である。 ↑の部分のなぜk-lはbの倍数になるのか? また、k、lはb-1以下の正の整数であるから 0<k<b、0<l<b ↑のー1はどうなったのか?と よって、-b<k-l<b ゆえにk-l=0であるからk=l ↑のゆえにk-l=0であるからk=lの部分の=0がどこからきたのか分かりません。 質問三つと多いですが、回答お願いします。

  • nが整数のとき、n^2が素数aの倍数ならばnはaの倍数である、は真ですか?

    数学の問題を解いていると、nが整数のとき、 n^2が3の倍数⇔nは3の倍数 を証明せよ n^2が5の倍数⇔nは5の倍数 を証明せよ という問題がありました。 そこで、質問タイトルにあるように、 「n^2が素数aの倍数⇔nはaの倍数」 は成り立つかな?と思って証明しようと思い、 必要は明らかなので十分について 対偶を取って数学的帰納法で証明しようとしたのですが、うまくいきませんでした。 そもそもこの命題は真なのでしょうか。真なのでしたら、 出来るならば高校数学の範囲で証明を示してもらえないでしょうか。

  • 対偶を証明する目的

    命題を証明するとき、もとの命題ではなく、対偶を証明するときはありますよね。 例えば3の倍数の2乗は3の倍数になる。 これの証明をしているものは、これの対偶を証明しています。 でも、別にそのままでも証明できますよね。 この問題では、もとの命題のまま証明するとダメなのでしょうか? 回答よろしくお願いします。

  • 命題と論証の証明問題

    宿題の証明問題がどうしてもわかりません。 答えとその過程を教えてほしいです。 (1)a,bは有理数でb≠0とする。 √2が無理数であることを用いてa+b√2が無理数であることを証明せよ。 √6が無理数であることをもちいて、√2+√3が無理数であることを証明せよ。 (2)命題「nは整数とする。n2乗が3の倍数ならばnは3の倍数である」は真である。 これを利用して√3が無理数であることを証明せよ。

  • 命題とその対偶、真偽について

    高校数学のある命題についてです。 a,b が整数であるとき、以下の命題があります。 ・命題:   a*b が奇数のとき、aまたはbのどちらか一つが奇数である。 このとき、命題について対偶を考えます。 まず、「a*bが奇数である」 の否定は 「a*bが偶数である」 また、「aまたはbのどちらか一つが奇数」の否定は 「aが奇数 または bが奇数」の否定なので、ド・モルガンの法則より 「aが偶数 かつ bが偶数」、つまり「a,bの両方が偶数」 となり、本命題についての対偶は以下の様になると考えました。 ・対偶:   a,bの両方が偶数のとき、a*bは偶数となる。 この命題の対偶は真となりますが、命題は疑となると思います。 一般的に命題とその待遇の真偽は一致するはずなので、 何かが間違えているのではないかと思っています。 (1) 命題は真? (2) 対偶のとり方が間違えている? (3) 対偶は真ではない? (4) 命題と対偶の真偽は一致しない? 大変困っております。どなたか教えて下さい。お願いいたします。

  • 対偶について

    元の命題の真偽と対偶の真偽が一致するという証明方法はどのようなものですか。

  • 背理法について

    整数a,b,cについて次の問いに答える ((1)) (a^2)を3で割った余りは0または1であることを示す どのように求めるかわかりません。 背理法の説き方だと思うのですが、命題と書いてないのでよくわからないです。 もし、aが3の倍数でないとき a=3k+1 a=3k+2 といえるがわかりません。 ((2)) 命題”(a^2)+(b^2)=(c^2)ならば、(a^2)が3の倍数か、または(b^2)が3の倍数である” が真であることを示す。 これは、ちゃんと命題と書いてあるので背理法を求めればよいとわかります a^2)+(b^2)=(c^2)ではないとき(a^2)が3の倍数でなく、かつ(b^2)も3の倍数でなと仮定すれば矛盾が生じますが、 どのように求めるかわかりません。 お願いします