- ベストアンサー
命題の対偶と真偽について
- 高校数学の命題について、対偶の考え方と真偽について調査しました。
- 命題については一般的に、命題とその対偶の真偽は一致するはずですが、この命題の対偶が真となります。
- 対偶の取り方には間違いはなく、命題と対偶の真偽が一致しない理由について考える必要があります。
- みんなの回答 (2)
- 専門家の回答
関連するQ&A
- 対偶が正しいのは経験的なものですか?
間違っている可能性がありますが、数学的に正しいと言われているのは、種類は二つあると思っていていまして、証明はできないが経験的に正しいものと、証明ができ、完全に正しいと言えるものです 証明はできないが経験的に正しいものの例としては、偶数 * 偶数を一つ一つ計算して、正しいと言えるかどうかを判断されているものです 2*2 =4 6 8 10 12 と何度計算し直しても、偶数になりますが、これは完璧に正しいものとは言えません なぜなら、偶数に当てはまる数を全て計算したわけではないので、命題 偶数 * 偶数=偶数が絶対に真であると言えないからです(私は、例としてこれを出しただけで、偶数*偶数を証明したいわけではありません) 証明ができ、完全に正しいと言えるものの例として、定理と言われているものです 質問タイトルの”経験的なもの”というのは、前述で説明した”証明はできないが経験的に正しいもの”という意味です この質問をしたところ、” 経験的ではありません 元の命題とその対偶の両方の真理値表を書いてみればよいです。” と返ってきましたが、この元の命題をAとすると、命題Aと命題Aの対偶の真偽が一致しているというだけで、全ての命題で正しいとは言えないので、対偶が正しいのは経験的と言えます
- 締切済み
- 数学・算数
- 対偶法による不成立の証明
対偶法による不成立の証明 対偶法というのは命題が不成立の場合も成立するのでしょうか?? たとえば・・ 「nが偶数ならば3nは奇数である」・・・(1) (1)はもちろん不成立です。 (1)の対偶は 「3nが偶数ならばnが奇数である。」 ・・・(2) となります。((2)も不成立です。) (1)の対偶は(2)ですがこういった不成立の場合も対偶の真偽((1)と(2))は一致するのでしょうか?? できれば解説なんかも付けていただくと・・うれしいです。 拙い説明ですがどうかよろしくお願いします。
- 締切済み
- 数学・算数
- 命題の真偽(逆、裏、対偶)
『𝓍, yは実数とする。𝓍 ≠ 0 → 𝓍y ≠ 0の命題の真偽を調べよ。また、その逆、裏、対偶を述べ、それらの真偽を調べよ。』次のように考えました。正解かどうか教えてくれませんか。間違いなら理由などコメントしてください。お願いします。 逆) 𝓍y ≠ 0 → 𝓍 ≠ 0 真 裏) 𝓍 = 0 → 𝓍y = 0 真 対偶)𝓍y = 0 → 𝓍 = 0. 偽(反例:y=0, 𝓍=1) したがって命題は偽である。
- ベストアンサー
- 数学・算数
- 命題 n^2が偶数ならば、nは偶数である
nは整数とします この命題が真であることを対偶と背理方を使わずに証明せよ 命題 n^2が偶数ならば、nは偶数である どなたかご教授願います
- 締切済み
- 数学・算数
- ある命題の真偽の理解につきまして
x, y を実数とするとき、命題「xy != 6 ならば x != 2 または y != 3 である」は、対偶を考えれば、真であることは即座に理解できるのですが、対偶を考えずに表記の命題を直接、直感的(もしくは論理的)に理解したいのですが、どうも頭の中がすっきりしません(記号 != はノットイコールの意味で用いています)。 添付図のように xy = 6 の双曲線を書いて、「xy != 6 ならば」、「(x, y) = (2, 3) を満たしさえしなければよい」というのは納得できるのですが、表記の命題を見た瞬間に直感的に理解したいのです。 当たり前のことと言えば、当たり前のことなのですが、どうもモヤモヤが残っています。 ド・モルガンの法則を習ったときのように、一方は直感的に理解できるのに、他方は直感的に理解できないもどかしさを感じています。 雲を掴むような質問でたいへん恐縮ですか、表記の命題を即座に直感的に理解できる方は、どのような感覚(もしくは、その背景にある論理的思考?)で理解されているのでしょうか? なにかしらアドバイス頂けないでしょうか? よろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 対偶に関する問題です。
問題)正の整数a,bに対して、a^2+b^2>50ならば、aまたはbは5より大きい。 このことを、この命題の対偶を考えることにより証明せよ。この命題の対偶が、 テキストの模範解答には 「正の数a,bに対して、a≦5かつb≦5→a^2+b^2≦50」となっています。 しかし、ある指導者の解答では 「aかつbが5以下→a^2+b^2≦50」となっていました。 どちらも正しいでしょうか? また 以下の命題の対偶の書き方は成り立つでしょうか? 「(a∪b)≦5→a^2+b^2≦50」 よろしくお願いします。
- ベストアンサー
- 数学・算数
- DCP-J567Nで突然印刷ができなくなった状況について相談します。
- DCP-J567Nの印刷トラブルの原因と対処方法を解説します。
- DCP-J567Nの印刷エラーについて、Mac OS Big Surでの対応策を紹介します。
お礼
納得しました。 大変ありがとうございました。