• 締切済み

命題と論証の証明問題

宿題の証明問題がどうしてもわかりません。 答えとその過程を教えてほしいです。 (1)a,bは有理数でb≠0とする。 √2が無理数であることを用いてa+b√2が無理数であることを証明せよ。 √6が無理数であることをもちいて、√2+√3が無理数であることを証明せよ。 (2)命題「nは整数とする。n2乗が3の倍数ならばnは3の倍数である」は真である。 これを利用して√3が無理数であることを証明せよ。

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

(1) の一つ目   x = a+b√2 とおくと、   (x -a)/b = √2  左辺は、もしxが有理数なら、有理数から有理数を引き算して有理数(≠0)で割り算すれば答は必ず有理数。ところが右辺は無理数。 (1)の二つ目   y = √2+√3 とおくと、   y^2 = 5+2√6  左辺は、もしyが有理数ならy^2=y×yは有理数×有理数だからy^2も有理数。一方、右辺は、一つ目と同じやり方で無理数だと分かる。 (2)についてはANo.1と同じことしか言えないなあ。

回答No.1

(1)も(2)も背理法を用いれば良いと思います。 (1)-1はa+b√2を有理数と仮定し、a+b√2=c1/c2 とする。ただしc1,c2∈Z,c2≠0 a,bも有理数なので、a=a1/a2 a1,a2∈Z,a2≠0   b=b1/b2 b1,b2∈Z,b1≠0(b≠0だから),b2≠0 とおいて、a+b√2=c1/c2 を変形して、√2=整数/整数の形に持って行って、√2が無理数であることと矛盾することを導けば良い。 (1)-2も√2+√3を有理数と仮定し、√2+√3=a/b とする。 ただしa,b∈Z,b≠0 両辺を二乗し変形して、√6=整数/整数の形に持って行って、√6が無理数であることと矛盾することを導けば良い。 (2)も√3を有理数と仮定すると、a,b∈Z,b≠0 でa,bは互いに素なるa,bで√3=a/b と表せる。 b√3=a を二乗して、3b^2=a^2 から a^2は3の倍数ゆえにaは3の倍数、さらにb^2は3の倍数ゆえにbも3の倍数を導き、a,bが互いに素であることと矛盾することを導き、最初の仮定が偽を示せば良い。

関連するQ&A

  • 集合と論証

    教えてください。 1. nが自然数のとき、命題「n2乗は偶数→nは偶数」が真であることを証明する。次の問いに答えなさい。 (1)この対偶をつくりなさい。 対偶「 → 」 (2)(1)でつくった対偶を利用して、もとの命題が真であることを証明しなさい。 [証明]nを正の( )とすると、mを( )として n= ( )と表すことができる。 このときn2乗=( )2乗=( )=2( )+1 ( )は( )であるから、n2乗は( )である。 したがって( )が( )であることが( )されたので、もとの命題も( )である。 2. √2-1が無理数であることを√2が無理数であることを用いて、背理法で証明しなさい。 [証明]√2-1が( )ではないと仮定する。 このとき√2-1は( )である。 a= ( )としてこの式を変形すると√2=( ) となる。 ここでa,1はともに( )であるから ( )も( )である。よって√2も( )となり √2が( )であることに( )する。 したがって√2-1は ( )ではないとした仮定が( )であり√2-1は( )であることが証明された。

  • 数II論証の問題について

    「xが無理数ならば、x^2とx^3の少なくとも一方が無理数になることを証明せよ」 ↑という問題で、↓のような解答は可能でしょうか? 背理法を用いる。 xが無理数のとき、x^2とx^3がどちらも無理数でない(有理数)と仮定すると、 互いに素な自然数a,bと、互いに素な整数c,d(d≠0)…(*)を用いて x^2=a/b、x^3=c/d このとき、x=x^3/x^2=bc/ad (*)より、bc、adともに有理数なので、bc/adは有理数。 これは、xが、無理数であることに矛盾する。 したがって命題は真である。 強引に導いてしまったので、厳しく添削していただけると嬉しいです♪ よろしくお願いします。

  • √7が無理数であることの証明

    √7は無理数であることを証明せよ。ただし、nを自然数とする時、n^2が7の倍数ならば、nは7の倍数であることを用いてもよいものとうする。 解 √7が無理数でないと仮定すると,1以外に公約数を持たない自然数a,bを用いて√7=a/bと表される・・・・・以下省 教えてほしいところ 有理数というのはa,bという整数を用いてa/bと表される数とかいてありました。 この記述だと、49/7は有理数じゃないと言っているように思えます。 いいんでしょうか?? また、自然数と限定しているのも疑問です。-3と-2で-3/-2これも有理数でさらに正です。 これを除外すると-3/-2は有理数じゃないということになります。 これは除外して考えてはいけないのでは??

  • 高1数学 命題の証明

    「整数aの平方aの2乗が3の倍数ならば、aは3の倍数であることを証明せよ。」 という問題が教科書に載ってたんですが解答をみると、この命題の対偶を使って証明しています。 この証明を対偶を使わずに証明するとどうなりますか? 疑問に思ったので分かる方いましたら、教えてください☆

  • 対偶による命題

    整数aについて、命題(a^2が3の倍数ならば、aは3の倍数である)が与えられている。 (1) 元の命題が真であることを証明する方法がわかりません。 これは、合同式をつかうそうなのですが、合同式についてよくわかりません。 誰か、お願いします

  • √nが有理数である又はないことの証明。

    √3が有理数でないことを、背理法で論証する場合。 √3=a/b(aとbは互いに素であるとする。)と置く。 3b^2=a^2である。 a^2は3の倍数であるので、aは3の倍数であり、a=3cとおくことができる(この事は対偶の真偽で論証できる。) 3b^2=9c^2 b^2=3c^2 であり、b^2が3の倍数なので、bも3の倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 これが√3が有理数でないことの証明だそうです。 次に、nを整数として、√nが有理数でないことを、背理法で論証する場合。 √n=a/b(aとbは互いに素であるとする。)と置く。 nb^2=a^2である。 a^2はnの倍数であるので、aはnの倍数であり、a=ncとおくことができる nb^2=n^2c^2 b^2=nc^2 であり、b^2がnの倍数なので、bもnの倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 ただしn=1.4.9.16・・・といった場合、√n=1.2.3.4・・・といったように、√nは有理数になってしまいます。 このやり方では√nが有理数でも、有理数でないと言えてしまいます。 √nが有理数の場合、有理数であると論証でき、√nが無理数の場合、有理数でないと論証できる方法を教えてください。

  • 証明問題ですが次の方法でいいでしょうか

    abが3の倍数であるとき、aまたはbは3の倍数であることを示せ [考えた答え] もとの命題に対する対偶は等しいので a,bともに3の倍数でないならば abが3の倍数でないならばabが3の倍数でないことを示す a,bはともに正の整数もm,nを用いて a=3m+1 b=3n+2と表せる。 ゆえに ab=(3m+1)(3n+2)=3(3mn+2n+1)+2 ゆえにabは3の倍数ではない ゆえにもとの命題も成立 答えがとうかと、ほかにもっといい方法はないか よろしくお願いします。

  • 数1 整数の証明問題について

    整数nにおいて、n^2がAの倍数ならばnはAの倍数である という命題の証明問題がありますが、全ての整数がAに当てはまるというわけではなく、何か条件があるのでしょうか。 Aに9を入れると成り立たないなあと不思議に思って質問してみました

  • 数1a命題と集合の問題です

    次の命題の真偽を求めよと問題があります。 nは9の倍数=>nは3の倍数 真である事は分かるのですが証明となると どうすれば良いのか解りません。 教えてくださいよろしくお願いします。

  • 数学A、命題と論証の質問

    次の命題p、qについてp⇒qの真偽を 集合を用いて答えよ。 p:自然数nは8の倍数である。 q:自然数nは4の倍数である。 これについて解答には 8の倍数である自然数の集合をP、 4の倍数である自然数の集合をQとすると P⊂Q(PはQの部分集合である)なので p⇒qは真である。 と書かれているのですが pとPは何がどう違うのか、qとQは何がどう違うのか また、P⊂Qならば何故p⇒qが真なのかが もうひとつよくわかりません。 具体例等を示して説明していただけるとありがたいです。 よろしくお願いします。