• ベストアンサー

ζ関数やL関数の全複素平面での定義式を教えて下さい

よろしくお願い致します。 ガンマ関数の定義域を全複素平面とすると Γ(s):=lim_{n→∞}n^s n!/Π_{k=0}^s (s+k)と書けると思います。 ゼータ関数やディレクレのL関数やHurwitzのゼータ関数(Re(s)>1ではζ(s,x)=Σ_{n=1}^∞ 1/(x+n)^s)の定義域を全複素平面に拡張した場合, 関数等式を使わないで定義式を記述する事は可能なのでしょうか 可能ならどのように書けますでしょうか? ζ(s)=?? L(s,χ)=?? (但し,χは法mのDirichlet指標) ζ(s,x)=??

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

少なくともζ(s)については  松本耕二「リーマンのゼータ関数」(朝倉書店)p.14, 式(2.4)があります

Nnarumi
質問者

お礼

どうも有難うございました。とても参考になりました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素平面での微分可能ということ。

    複素平面で微分可能ということは今、見ている本には以下のようになっています。 -------- ここから 定義 f(z)は領域Dで定義されているものとする。Dの点z0において lim (f(z0+dz)-f(z0))/dz  (lim dz→0) なる極限が存在するとき、f(z)はz0で微分可能であるといい、この極限をf'(z0)で表し、z0におけるf(z)の微分係数という。 ------- ここまで ここで質問ですが、これだけの定義と複素平面の性質からz0で微分可能ならば微分係数が微分の方向に依存しないということを誘導して示すことは可能でしょうか。それとも微分可能という定義に含まれることになるでしょうか(定義なのだから証明する必要なし)。 1変数の実関数f(x)がx0で微分可能という場合、右から近づいても左から近づいても極限としての微分係数が同じということが要求されます。これは誘導されるものではないように思います。そう言う意味で複素平面での微分は方向に依存しないということは誘導されたりするものではないということになるでしょうか。もし、複素平面での微分が方向に依存しない、ということが定義ということであれば、そういう性質を持つものだけを取り出して考えると言う意味になるのでしょうか。

  • 関数の極限と数列の関係が分かりません

    こんにちは。 f:C→Cの複素関数とします。 lim_{n→∞}a_n=α∈Cなる任意の複素数列(a_n)に対し, l:=lim_{n→∞}f(a_n)∈C(つまり,収束する)なら, lim_{s→α}f(s)=l を示してるのですがどうすればいいのでしょうか?

  • (1)x^3-1=0の解を求め複素平面上に書け。

    (1)x^3-1=0の解を求め複素平面上に書け。 (2)x^4-1=0の解を求め複素平面上に書け。 (3)x^n-1=0(n:整数>0)の解はどうなるか説明せよ。 どうやって解いたらいいのか,また複素平面上にはどうやって書いたらよいのか分からないので教えてください。

  • DirichletのL関数がs=1で正則となるのは

    s∈C,χはχ(Z_m^×)≠{1}なるDirichlet指標とする時, DirichletのL関数 L(s,χ)=Σ_{a=1}^{m-1}χ(a)/(m^s lim_{n→∞}n^s n!/Π_{k=0}^n(s+k))[Σ_{n=0}^∞(-1)^n B_n(a/m)/(n!(s+n-1))+∫_1^∞exp(-au/m)u^{s-1}/(1-exp(-u)) du] (但し,B_n(a/m)はn次のBernoulli多項式) がs=1で正則となる事の証明で質問です。 s=0,-1,-2,…の時はn^s n!/Π_{k=0}^n(s+k))の零点とΣ_{n=0}^∞(-1)^n B_n(a/m)/(n!(s+n-1))の極が打ち消しあって, 正則になる事は分かるのですがs=1の時は打ち消しあえないのでχ(Z_m^×)≠{1}という条件を使うのだと思います。 どのようにχ(Z_m^×)≠{1}を利用すればいいのでしょうか?

  • {s_n}をf∈L^+(a,b)の定義関数列とする時,lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ

    L^+(a,b) を区間(a,b)上の非負可積分関数全体の集合とする。 f∈L^+(a,b)に対し,定義関数列{s_n}が存在する。その時, lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ。 (この∫は単関数のルベーグ積分) という問題なのですがどのように証明していいのか分かりません。 定義関数列の定義からs_1(x)≦s_2(x)≦…≦f(x) でs_n(x)はf(x)に近づいていくので0となる事は直観では分かるのですが…。 どのようにすればいいのでしょう?

  • 複素平面での解析関数に対する要件

    複素平面での解析関数に求められる要件は名称で言うならコーシーリーマンの関係式です。それとイコールの意味での要件は、微分が方向に依らない(ガウス平面上の点に近づく全方向で微分が同じ値を取る)ということです。(この理解が間違ってるかも知れませんが) 私は、後者(微分が方向に依らない)から前者(コーシーリーマンの関係式)が誘導できないかなあと思っています。どうでしょうか。 実数の2次元平面(x,y)においてf(x,y)の任意の方向(n方向)の微分は、n・grad(f)となります。ベクトル解析における方向微分です。これを複素平面(ガウス平面)に適用してその値がnベクトルの成分に依存しないで一定である(すなわち方向微分の値が方向に依存しない)という要件から誘導できるのではないかと思いましたが、ハズレのようです。考え方が間違っているでしょうか。 なお、ガウス平面でのfのgrad(勾配)は、(df/dx, df/(d(iy))としていますが。 ※ガウス平面上の微分からコーシーリーマンの関係の誘導する過程は理解しました。微分値が(Δx, iΔy)に依存しないので方向に依存しないということだと思います。 以上、よろしくお願いします。

  • オイラーの定数の定義式をずらす

    lim[n→∞] Σ[k=1,n]1/k - ∫[1,n]dx/x = lim[n→∞] Σ[k=1,n]1/k - log(n) = γ (オイラーの定数) ですが、a>0として、 lim[n→∞] Σ[k=1,n] 1/(k+a) - ∫[1,n]dx/(x+a) の値は具体的に知られているのでしょうか?

  • f:R^n→R^mの導関数の定義式は?

    n=m=1の時なら lim[h→0]|f(x+h)-f(x)|/|h| が導関数の定義ですがf:R^n→R^mの場合には導関数の定義式はどのように書けるのでしょうか? n Σ(lim[hi→0]|f(x1,x2,…,xi+hi,…,xn)-f(x1,x2,…,xn)|/|hi|) i=1 では間違いでしょうか?

  • 定義式を使っての級数の収束半径の求め方は?

    Σ[k=0..∞]k^k(x-3)^k/k!の収束半径を定義式を使って求めています。 [解] X=x-3として収束半径の定義式から r=1/lim[n→∞]sup{|k^k/k!|^(1/k)∈R;k≧n}=1/lim[n→∞]sup{k/k!^(1/k)∈R;k≧n} でこれから スターリングの公式n!≒√(2πn)n^n/e^nを試してみました。 r=1/lim[n→∞]sup{k/k!^(1/k)∈R;k≧n} =1/lim[n→∞]sup{k/(√(2πk)k^k/e^k)^(1/k)∈R;k≧n} =1/lim[n→∞]sup{k/((2πk)^(1/(2k))k/e)∈R;k≧n} =1/lim[n→∞]sup{1/((2πk)^(1/(2k))/e)∈R;k≧n} =1/lim[n→∞]sup{e/(2πk)^(1/(2k))∈R;k≧n} =1/lim[n→∞]∞ (∵t:=(2πk)^(1/(2k))と置き対数を採るとlnt=1/(2k)ln(2πk) 1/tdt/dk=-2/(4k^2)ln(2πk)+1/(2k)2π/(2πk) 1/tdt/dk=-1/(2k^2)ln(2πk)+1/(2k^2) dt/dk=(2πk)^(1/(2k))(1/(2k^2)-1/(2k^2)ln(2πk)) dt/dk=(2πk)^(1/(2k))・1/(2k^2)(1-ln(2πk)) ここで1-ln(2πk)<0より(2πk)^(1/(2k))は減少数列。 よってe/(2πk)^(1/(2k))は増加数列) =0 となってしまいます。正解はr=eだと思います。 何を間違っているのでしょうか?

  • 複素平面での表示の仕方

    最近複素平面について習いました。複素数Z=X+iYを平面上の点(X,Y)として表す、ということで簡単だ、と思っていたのですが課題でどうしたらいいものかよくわからないものがあります。それは1+iπを複素平面上に表示せよ、というものです。π=3.14…なので適当に点を打ったらいいのか、とも思ったのですがそんなものを課題に出すはずがありません。そこでπの定義にまでさかのぼって考えるべきか、等といろいろ考えたのですがどうも考え違いをしているような気がします。数学に詳しい方、よろしくお願いします。