• ベストアンサー

コーシー・リーマンの関係式の十分条件の証明

コーシー・リーマンの関係式が成り立つならば関数は正則である。これの証明を教えてください。 http://www.f-denshi.com/000TokiwaJPN/12cmplx/030cmp.html にある証明方針が一般的なようなのですが何をしているのかよくわかりません。 大学1年でわかる説明をよろしくお願いします。

noname#202942
noname#202942

質問者が選んだベストアンサー

  • ベストアンサー
  • kgd34625
  • ベストアンサー率75% (9/12)
回答No.1

実数での微分可能の定義は 1.lim(x→a) f(x)-f(a)/x-a の極限が存在する。 2.右微分係数と左微分係数が一致 一般的には、1が重要ですが、絶対値のある式、不連続な関数では、 2も考慮しなければなりません。 コーシーリーマンの関係式は 複素数で1と同様のことを行っているのではないでしょうか。 この場合実数軸と虚数軸への写像で、1の操作を行って いると思います。 誰か数学のわかるかた、フォローお願いします。

関連するQ&A

  • 複素解析学の問題 コーシー・リーマンの方程式

    関数f(z)=e^iz + sinz が全平面で正則することをコーシー・リーマンの方程式を用いて証明する問題なのですが、まったくわかりません。どなたか教えていただけないでしょうか? お願いします(__

  • コーシー・リーマン

    ω=f(z)=u(x,y)+iv(x,y)がD上正則であることの必要十分条件をコーシー・リーマンの関係式を用いて述べたいのですがどのような感じで述べれば良いのですか?回答式に答えていただきたいです。 また、ω=f(z)=u(x,y)+iv(x,y)がD上正則のとき、導関数が1/i{Uy(x,y);iVy(x,y)}で与えられることを示したいのですがどうすればよろしいですか? これも回答式に答えていただきたいです。 よろしくお願いします。

  • コーシーリーマンの関係式に関して

    http://www.k2.dion.ne.jp/~yohane/000suugaku31.htm コーシーリーマンの関係式の導出はここにも書いていますように どの方向から微分しても同じ値になるという正則性から導出されますが、 この条件の意味するところは何なのでしょうか? よろしくお願いいたします。

  • コーシー・リーマンの関係式の証明

    f(z)=u(x,y)+iv(x,y) において、(z=x+yi) (df/dx)*(dx/dz)=(df/dy)*(dy/dz) より、 コーシー・リーマンの関係式 du/dx=dv/dy,dv/dx=-du/dy が成り立つ。 ↑のような証明法ではまずいでしょうか?

  • コーシーリーマンの問題について

    φ=x^2-y^2,ψ=2xyはコーシーリーマンの式を満たすことを示せ。 また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 という問題なのですが、 >また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 ここの解は、 例えば、x^2+iy^2のような関数はφ=x^2,ψ=y^2であり、 ∂φ/∂x=2x,∂ψ/∂y=2yとなり、コーシーリーマンの関係式が満たされるのはz平面内で直線y=x上だけである。 よって関数x^2+iy^2は満たさない。 このような解でいいんでしょうか? よろしくお願いします。

  • 複素微分の存在→正則の証明

    複素関数fの複素微分が存在するなら、その関数は正則であるということを証明するプロセスは複素関数論の教科書にはすべて載っていると思います。 私の本では複素微分df/dzにおいてdz=h+ikとして、k=0でh→0としたものと、h=0としてk→0としたものが一致しなければならないということから正則であることを誘導しています。複素微分による2つの特殊な例を適用したように見えるのですが、これで演繹的に証明したことになるのでしょうか。 これに関連して、正則とはコーシーリーマンの関係が成立することであり、それが正則の定義と考えていいのでしょうか。つまり正則ならコーシーリーマンの関係式が成立することを証明せよ、というようなことはないと思っていいでしょうか。 なお、正則→複素微分の存在という証明が別途出てきますが、こちらは平均値の定理とコーシーリーマンの式で演繹的に証明できたような印象なのですが。

  • f(z) = z - 1/z に対してコーシー・リーマンの関係式を使っ

    f(z) = z - 1/z に対してコーシー・リーマンの関係式を使って正則性を判定せよ。 解答 f(z)はz≠0において定義され、 f(z)= u + iv u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) であり、 u_x = v_y u_y = -v_x よってz≠0で正則 …と書いてあって、 u_x = v_y、u_y = -v_xの偏微分は計算できるんですが、 その前の u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) をどうやって導き出したのか教えてください (式さえ教えてくだされば自分で計算します)。 この本には例が一つも載っていません…。お願いします。

  • 極形式のコーシー・リーマンの関係式

    極形式で表した複素数 z = r exp( iθ ) 極形式で表した複素関数 f(z) = R(r,θ) exp( iΘ(r,θ) ) において { f(z) - f(z0) } / ( z - z0 ) ・・・* の極限(z→z0)を ( r 一定)と( θ 一定)でそれぞれ調べることにより、極形式におけるコーシー・リーマンの関係式が r ・∂R/∂r = R・∂Θ/∂θ    ∂R/∂θ = - rR・∂Θ/∂r を示せ。という問題なのですが、*の式に極形式のf(z), f(z0), z, z0をそれぞれ代入して r 一定のときは [ R(r0,θ0+h) exp{iΘ(r0,θ0+h)} - R(r0,θ0) exp{iΘ(r0,θ0)} ] / {r0 exp(iθ0) (exp(ih)-1)} ・・・(1) となり、θ一定のときは [ R(r0+k,θ0) exp{iΘ(r0+k,θ0)} - R(r0,θ0) exp{iΘ(r0,θ0)} ] / (k exp(iθ0)) ・・・(2) となることは代入だけなのでわかるのですが、これらの式で h , k を0にする極限をとったとき、 (1)→ { (1/ir0) ∂R(r0,θ0) / ∂θ + (1/r0) R(r0,θ0) ∂Θ(r0,θ0) / ∂θ }exp(iΘ(r0,θ0) exp(-iθ) (2)→ {∂R(r0,θ0) / ∂r + iR(r0,θ0) ∂Θ(r0,θ0) / ∂r }exp(iΘ(r0,θ0)) exp(-iθ) となるところがわかりません。これが示せれば後は両者の実数部と虚数部が等しくなることから極形式のコーシー・リーマンの関係式が導けるのですが。

  • 複素関数の証明

    たびたびすいません>< (1)関数f(z)=u(x,y)+iv(x,y)が正則なら  △lfl^2=4lf'l^2≧0 がなりたつ (2)さらにfが零点を持たないとき  △loglfl=0 がなりたつ 以上を証明するのですが、(1)は普通に作用させたらu,vの2階微分が消えず、また1階微分も2乗になりませんでしたf^^;(2)も2階微分が消えないのです><是非教えてください。。2階微分にもコーシー・リーマンのような方程式があるのですか?

  • 複素関数の正則性。

    領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。