• 締切済み

部分空間であることの証明

微分方程式 f"(x)-2xf'(x)+6f(x)=0 を満たすK係数多項式全体をWとおく。 W={f(x)∈K[x]|f"(x)-2xf'(x)+6f(x)=0} このとき、WはK[x]の部分空間になることを示せ。 という問題です。 {f1(x)+f2(x)}′=f1'(x)+f2'(x) {cf(x)}′=c{f'(x)} を使うというヒントはもらっているのですが・・これを用いて (i) v1,v2∈W ⇒ v1+v2∈W (ii) 任意のc∈K,v∈Wに対し、cv∈W をどのように証明すればよいのでしょうか?? いったいどうやったらいいのでしょうか??

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

いやもう「そのまま」ですが. (i) なら「W の要素」である v1, v2 を持ってきたときに v1+v2 が W の要素であることを示すとか, (ii) でも「W の要素」である v と K の要素である c に対して cv なるものが W の要素であることを示すとか, ほんとに「そのまま」.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 部分空間になることの証明

    微分方程式 f"(x)-2xf'(x)+6f(x)=0 を満たすK係数多項式全体をWとおく。 W={f(x)∋K[x]|f"(x)-2xf'(x)+6f(x)=0} このとき、WはK[x]の部分空間になることを示せ。 という問題です。ヒントとして、 {f1(x)+f2(x)}′=f1'(x)+f2'(x) {cf(x)}′=c{f'(x)} を使うということを聞いたのですが、どう使っていいのかわかりません。 f"(x)-2xf'(x)+6f(x)=0というところも一体どうしていいのか・・・涙 WがVの部分空間であるとき、 (i) v1,v2∋W ⇒ v1+v2∋W (ii) 任意のc∋K,v∋Wに対し、cv∋W を証明すればいいということは分かっていますが、v1、v2が今回の問題の場合何に置き換えればいいのかわからず困っています。 面倒かもしれませんが証明までの流れを書いていただけると嬉しいです。

  • 線形空間

    広義線形空間分解の問題です。 VをC係数の二次以下の多項式全体のなすC上のベクトル空間とする。 Vの元f(X)に対して、 φ(f(X))=X^2*f"(X)-f'(X)+f(X) とおく。 f"は二階微分,f'は一階微分 このとき、Vのfに関する広義固有空間分解を求める問題です。 考えたのですが、糸口からしてわかりません。 解答の道筋を教えてください。

  • 部分空間についての質問です

    多項式の集合で作られる線形空間 P₂(K) = {f(x) = a₀ + a₁x + a₂x²│ a₀, a₁, a₂ ∈ K} の部分集合W = { f(x) ∈ P₂(K) | f(2) = 0 } が与えられたとき、集合 W が P₂(K) の部分空間となるかどうかを確かめよ この問題が分かりません…

  • 双対空間のある証明

    線形空間Vの元xに対して、(V*)* (Vの双対空間の双対空間) の元Txを        Tx(f)=f(x) (fはV*の元)       で定義する。 このとき、写像 x→Tx は線形同型写像である事を証明せよ。 (Vはもちろん有限次元と仮定している。無限次元では正しくない。) という問題で、まず線形写像である事を示そうと思い、 Vの元からx,y 体Kからcを持ってきて、fは定義から線形写像だから                  f(x+y)=f(x)+f(y),f(cx)=cf(x)より、 Tx+y(f)=f(x+y)=f(x)+f(y)=Tx(f)+Ty(f) Tcx(f)=f(cx)=cf(x)=cTx(f) が成り立つ事から、Txも線形写像である事が示せることはわかったのですが、同型写像を示す時、これはTxが全単射である事がいえればいいわけですよね。 ここから先が全く分からなくて困っています。どなたか私に知恵を授けてください。

  • 部分空間について

    線形代についてでわかる人お願いします。 V=R二乗とする。以下の部分集合はVの部分空間か? 部分空間である場合は証明し、そうでない場合は理由を述べよ。 (1) W1={x∈V|x1=0} (2) W2={x∈V|x1=1} (3) W3={x∈V|x1の二乗=0} お願いします

  • 線型空間であることの証明

    ある集合が与えられ、それが線型空間であることを証明するには何を示せばいいのか教えてください! 大学のレポートで出題されたのですが、線型空間の定義などを読んでもこの問題をどう解いていいのかわからなくて・・・以下に問題をそのまま転載します。 次の集合が実線型空間であることを示しなさい。 1) V1={(x1 x2 x3)| xi∈R(i=1,2,3)& x1+x2=x3} 2) V2={f(x)|f(x)は開区間I=(0,1)で定義された二回微分可能な実数値関数で、微分方程式f"(x)+3f'(x)+2f(x)=0を満たす。} 本当に何をしてよいか解らない状態なので、どういうことを示せばいいのか、どう考えるきっかけを作ればいいのかといったことでも結構ですので宜しくお願いします。

  • 部分ベクトル空間について

    Vを3次多項式全体の集合 V={ax^3+bx^2+cx+d | a,b,c,d∈R} とする. 次の(1),(2),(3)のようなVの部分集合について,Vの部分ベクトル空間となるものはどれか? (1)W={ax^3+bx^2+cx+d | a,b,c,d≧0} (2)W={f'(x) | f(x)∈V} (3)W={f(x)∈V | f'(x)=0} 自分でやってみたところどれも部分ベクトル空間になりました. 合っているでしょうか?

  • 部分空間の証明

    Sを距離空間、Yをノルム空間とし、SからYへの連続写像全体の集合をC(S,Y)で表す。また、Cb(S,Y)=Fb(S,Y)∩C(S,Y)と置く。 ただし、F(S,Y)はSからYへの写像全体の集合で、Fb(S,Y)={u∈F(S,Y)| sup(t∈S)||u(t)||_Y<∞}でとします。 この時Cb(S,Y)はFb(S,Y)の閉部分空間であることを示せ。 定義として Xの部分集合YがXの部分空間である ⇔∀u,v∈Y,∀α,β∈Kに対してαx+βy∈Y まず感覚的にですが、Cb(S,Y)⊂Fb(S,Y)なので部分集合であることはOK 後は∀u,v∈Cb(S,Y)、∀α,β∈Kに対してαx+βy∈Cb(S,Y)を示す。 u,v∈Cb(S,Y)よりx,y∈Fb(S,Y) 任意のt∈Sに対して、 ||(αu+βv)(t)||=||αu(t)+βv(t)|| ≦||αu(t)||+||βv(t)||=|α|*||u(t)||+|β|*||v(t)|| ≦|α|sup(t∈S)||u(t)||+|β|sup(t∈S)||v(t)|| となるので有界であることは示せました。 後は連続性と閉集合であることを示したいのですが、 これはどのように示せばいいのでしょうか? 連続写像の和、スカラー倍は確かに連続写像となることは、 集合と位相あたりの本に書いてあったような気がしましたが…。

  • 証明

    Vがx,yの実数係数の多項式全体からなるベクトル空間で、T:V→Vを T(f(x,y))=-f(-y,x+y) とし、x^2,xy,y^2で張られるVの部分空間をV2としたとき、 f(x,y)∈V2に対してT(f(x,y))∈V2を与える変換をT2とした とき、T2がV2の線形変換であることの証明と、基底x^2,xy,y^2に関するT2の表現行列Aを 求める問題がわかりません。どなたかお願いします。

  • 線形代数

    Vを3次以下の実係数多項式全体のなすベクトル空間とする: V={a0+a1x+a2x^2+a3x^3|a0,a1,a2,a3∈R} V上の線形変換T:V→Vを T(f(x))=f(x+1)-xf'(x) (f(x)∈V) によって定義する。但し、f'(x)はf(x)の微分を表わす。 (1)Vの基底x^3,x^2,x,1に関するTの行列表示を求めよ。 (2)ImTとKerTの基底を一組づつ求めよ。 という問題なのですがどなたかわかる方がいらっしゃれば解答よろしくお願いいたします。