• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:多次元空間に分布する2つのクラスが一致するか否か)

多次元空間でのクラスの一致性調査について

このQ&Aのポイント
  • 多次元空間でクラスAとクラスBの一致性を調べるための統計的手法を検討しています。
  • 変数ごとにクラスAとクラスBのデータの平均を求めましたが、完全な一致はありませんでした。
  • 一致性を調べるための対応のない2群の検定を行うことが考えられますが、3次元データの場合の取り扱いについて悩んでいます。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

>3つの変数からなる集団の分析法があるか? 逆言うと,2変数や1変数なら分かる, ということですね。 たしかに,3変数のままでは,扱いにくいのです。 そんなときのために,主成分分析があります。 4変数だろうが,5変数だろうが,変数を減らせる可能性があります。 例えば,zがx,yの関数で表せれば,x,yの2変数問題となるのです。 これで,変数を減らして比較すればよいのです。 例えば,下記サイト http://www.g-link.co.jp/CSN/principa.htm それから,相関と書いてありましたが,相関や回帰から,集団の一致は,例え2次元データでも単純には調べられません。 添付図を見てください。 相関係数が等しく,回帰の傾きも切片も等しい(同一直線で表される)二つの集団があります。 相関や回帰が同じでも,これらは違う集団と見なすべきでしょう。 実は,生物の体を測定したとき,このようなことが起こりえます。 つまり,大型化(あるいは,小型化)という進化したときなどです。 こういう場合は,それぞれの変数で多重検定すれば判明します。 ですから,「3変数くらいまで」だったら,まず,グラフで傾向を知ることも大切です。

mon-monkey
質問者

お礼

なるほど、仰る意味がようやくわかりました。どうもありがとうございます。引き続き、自分の得たい結果に適した解析手法を探っていきます。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.1

まず,質問者さんの言ってることは,少々矛盾してるのですが・・ >クラスAとクラスBが「一致」するのか「不一致」なのか を調べるんですね。 つまり,分析前は,両者が一致してるかどうか不明という意味ですね。 それなのに, >AかBのどちらかのクラスに属するという状況 という前提は変ですね。 前提として,別々のクラスを設定するなら,それは既に,「両者は不一致」,ということです。 既に,別々のクラスが設定され,その上で,あるデータ点が,どちらのクラスに属するか, という問題なら,多変量解析の判別分析です。 また, クラスが1つなのか(2集団が同1集団から来たもの)か, 2つのA,Bに分かれる(2つの異なる集団からきたもの)か 不明なら, >クラスAのデータの平均とクラスBの平均を求めること をやって, >当然ですが完全に一致することはありませんでした。当たり前ですよね・・・ の「当然」とも言えませんよ。 もし,何らかの検定をやって(何をやったか書かれてないんですが・・・), その「平均」で有意差が出たら, そういう意味で(例えば,xの平均に有意差がある,という意味で),違う集団です。 もし,分散を調べて,有意差が出たら,その意味で違う集団です。 各変数について調べるのは間違っていません。 でも,何の違いを調べる(位置?散らばり?,両方?その他?)かで,やり方も違ってきます。 いずれにしても,この変数x,y,zごとの検定は,一種の多重検定になるので, 有意水準の設定に注意する必要があります。 例えば,Bonferroniの考え方で,5%水準にするなら,それぞれ,5%の1/3ずつの水準にする必要があります。 いずれにしても,検定に入る前に,何を前提にして,何を調べるか,を明確にする必要がありそうです。

mon-monkey
質問者

補足

どうもありがとうございます。まず質問を補足させていただきます。 状況としては、2つのクラスに相関があるかどうかは不明であり、これを確かめたいと思っています。回答者様の仰る「クラスが1つなのか(2集団が同1集団から来たもの)か,2つのA,Bに分かれる(2つの異なる集団からきたもの)か不明」の方が私の質問の意図になります。 また、分析としてはまだ平均を求めただけでありまして、何の検定も行っておりません(どの検定を用いればよいかわからなかったため)。 3つの変数からなる3次元空間上の点の分布について調べることのできる分析手法や検定方法はございますか?それとも、そんな方法はなく、まずは各変数ごとの検定を多重検定になることを考慮して行えばよいのでしょうか?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 4次元空間について

    4次元空間に半径1、原点中心の超球(x^2+y^2+z^2+w^2=1)があります。これを、4次元における平面(例えばa*x+b*y+c*z+d*w=eといった平面)で切り取った切片、つまりこの平面と超球の共通部分はおそらく3つの変数で表せると思うのですが、その切片を3次元空間で表すとどんな図形になるのでしょうか? 考えているのですがイマイチつかめません。 どなたかお力添えをおねがいします。

  • 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件

    4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 これらのベクトルで張られる空間が1次元、2次元、3次元、4次元である条件を求めたいのです。 各ベクトルを並べて行列(a↑ b↑ c↑ d↑)を作り、基本変形で階数を計算するというアルゴリズムではなく、各成分の代数的な関係を求めたいのです。 4つのベクトルで張られる空間が4次元のとき、超体積が0ではないので、行列式 |a↑ b↑ c↑ d↑|≠0 4つのベクトルで張られる空間が1次元のとき、すべて平行なので、 a↑∥b↑∥c↑∥d↑ a[1]:a[2]:a[3]:a[4]=b[1]:b[2]:b[3]:b[4]=c[1]:c[2]:c[3]:c[4]=d[1]:d[2]:d[3]:d[4] (a[1]/a[4],a[2]/a[4],a[3]/a[4])=(b[1]/b[4],b[2]/b[4],b[3]/b[4]) =(c[1]/c[4],c[2]/c[4],c[3]/c[4])=(d[1]/d[4],d[2]/d[4],d[3]/d[4]) このあと、一つの式にする、つまり、イコールを一つだけにしてきたいのですが、複雑そうです。行列式またはシグマ記号を使って、表記できないでしょうか? 4つのベクトルで張られる空間が2次元、3次元のとき、それぞれの各成分にはどういった関係式があるのでしょうか?

  • 3次元空間での傾き、切片の求め方

    ある点S(X1,Y1)からある点G(X2,Y2)の直線があると仮定します。 このとき 傾きA=(Y2-Y1)/(X2-X1) 切片BはY=AX+Bより    =Y-AX と、2次元空間の場合はわかります。 ですがこれが3次元空間になるとどのように解けばいいのか分からないです。分かる人がいたら教えてください。 ある点S(X1,Y1,Z1)からある点G(X2,Y2,Z2)の直線があると仮定します。 このとき 傾きA= ? 切片B= ?

  • 3次元空間上の2点を結ぶ線分の中点を知りたい

    3次元空間上の点A(x1, y1, z1)と点B(x2, y2 z2)を結んで出来る線分の中点を知りたいのですが、 完全な文系出身であまり数学に詳しくないため、公式の見方がよくわかりません。 Wikipediaの中点のページにあるn次元ユークリッド空間上の中点の公式がそれのようですが、 「n 次元ユークリッド空間上の2点 A, B を直交座標系であらわし、それぞれを (a0, ..., an-1), (b0, ..., bn-1) とすると」 の時点ですでに理解できないので、単純な公式で教えて下さると助かります。

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 4次元空間で点と直線・平面の距離の公式の一般化を考えたい

    4次元空間と書いたのは、一般化と単に記述の簡単さが目的です。 さらに記述の簡単さのために、4次元空間の中の点(p,q,r,s)と、n次元ベクトル空間との距離を考えたいと思います。 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4])で張られる1次元ベクトル空間(原点を通る直線)との距離の公式はどう書けるのでしょうか? 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4]),(b[1],b[2],b[3],b[4])で張られる2次元ベクトル空間との距離の公式はどう書けるのでしょうか? 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4]),(b[1],b[2],b[3],b[4]),(c[1],c[2],c[3],c[4])で張られる3次元ベクトル空間との距離の公式はどう書けるのでしょうか? また、垂線の足の座標はどうなるのでしょうか? n次元ベクトル空間上の点をいくつかのパラメータを用いて表し、距離の2乗を偏微分したものが0ということから公式を導こうとしたのですが、うまくいきません。 どうかきれいに計算できた方は教えてくださいませ。

  • 離散型分布と連続型分布

    「Xを平均Aのポアソン分布の確率変数として、パラメータAはそれ自体が、平均Bの指数分布に従っています。Xの分布を示せ。」 この問の導く過程が理解できませんでした。 御願いします。

  • 3次元空間のグラフについて

     問題を解いていてわからない問題が出てきましたので質問させてください。 ↓以下問題と答え (問題) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面が、 x+y+z=bであらわされる平面と一点で接しているとき、aとbの関係を表せ。 (答え) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面とは、原点を中心とし、 半径をaとする球面である。球面と平面が1点で接しているとき、 球面の中心と平面との距離は球面の半径と同一であることになる。 したがって、b/ルート3 = aとなる。 と書いてあるのですが、文の流れからb/ルート3は球面の中心と平面との距離を表していると思うのですがなぜこうなるのかが全く分かりません。見にくい文で申し訳ないですが、分かる方がいらっしゃいましたらよろしくお願いします。

  • 4次元データを射影により3次元に縮小する方法

    以下のような 3本の位置ベクトルによって示される3次元空間に、4次元 データを射影し、次元縮小する方法を教えてください。  A = [a1 a2 a3 a4]、 B = [b1 b2 b3 b4]、 C = [c1 c2 c3 c4] 射影行列を求め、各データ点との積を求めるのだと思いますが、やり方 が分かりません。 仕事で次元縮小のプログラムを作らなければならないので、大変困っています。どなたか、助けてください。

  • 正規分布について教えてください!

    皆さん助けてください! 宿題として、 ************** ある変数xについて x~N(μ,σ^2) この時、標準化(z=x-μ/σ)後のZの分布の平均値と分散を算出せよ。なお、データはnとする ************** というものが出ました。つまり、標準正規分布のN(0,1)を導けというのです。インターネットで調べて、答えが平均値(μ)=0,分散(σ^2)=1であることは分かったのですが、それを導き出すまでの途中式が分かりません…。 統計学が得意な方どうかよろしくお願いいたします!