• ベストアンサー
  • すぐに回答を!

分数型の漸化式

数列{an}がa1=4,an+1=4an+8/an+6で定められている。 (1)bn=an-β/an-αとおく。このとき,数列{bn}が等比数列となるようなα,β(α>β)の値を求めよ。 bn+1=an+1-β/an+1-α=(4an+8/an+6)-β/(4an+8/an+6)-α=(4-β)an+8-6β/(4-α)an+8-6α =(4-β)/4-α・an+(8-6β/4-β)/an+(8-6α/4-α)・・・・(1) {bn}が等比数列になるための条件は8-6α/4-α=-α,8-6β/4-β=-β よって,α,βは2次方程式8-6x=-x(4-x)の2つの解であり,α>βからα=2,β=-4 教えてほしいところ α,βは2次方程式8-6x=-x(4-x)の2つの解でありとありますが、8-6α/4-α=-αや8-6β/4-β=-β はα=4,β=4だと値が存在しませんよね? ですから、2次方程式8-6x=-x(4-x)を解いた上で4でないことを確認すっる必要があるのでは??

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

こんばんわ。 まず、分子・分母が非常に見づらいです。 中括弧も用いるなどして、どこまでが分子で、どこまでが分母かをわかるようにしてください。 できれば、数列の項も a(n+1)や a[n+1]などと表してもらうと、わかりやすいかと。 本題ですが、αやβが 4にはならないことは、 b[n+1]= { (4-β)a[n]+ 8-6β }/{ (4-α)a[n]+ 8-6α } と表された時点で言えることですね。 分子・分母いずれかの a[n]の係数が 0になるので、 b[n]= { a[n]-β }/{ a[n]-α } の形にならないからです。 ですので、2次方程式の話へもっていく前に 「α,βはともに 4とはならない」もしくは「α≠ 4かつ β≠ 4である」と言えることになります。 #1さんや、#2さんの回答は 「出てきた答えがもし x= 4となれば、そのときにきちんと論じればよい」というスタンスになると思います。 わたしもそれでいいかと思います。 どうしても確認を入れるのであれば、 2次方程式を解いてから、わざわざ「4ではありませんね」とするより、 上のようにあらかじめ「4ではダメですよ」って言っておいて、 もし 4になったら・・・というように論じればいいと思います。 (実際の解は 4にならないので、特に論じない。)

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

えぇと.... 「明らかといえる根拠を示していただけませんか??」 ということは, あなたには「2 と 4が違う」とか「4 と -4 は違う」ということが明らかではない, ということですか?

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

2 も、-4 も、4 でないことは明らかだと思いますが。

共感・感謝の気持ちを伝えよう!

質問者からの補足

明らかといえる根拠を示していただけませんか??

関連するQ&A

  • 数列と確認

    数列{an}がa1=4,an+1=4an+8/an+6で定められている。 (1)bn=an-β/an-αとおく。このとき,数列{bn}が等比数列となるようなα,β(α>β)の値を求めよ。 bn+1=an+1-β/an+1-α=(4an+8/an+6)-β/(4an+8/an+6)-α=(4-β)an+8-6β/(4-α)an+8-6α =(4-β)/4-α・an+(8-6β/4-β)/an+(8-6α/4-α)・・・・(1) {bn}が等比数列になるための条件は8-6α/4-α=-α,8-6β/4-β=-β よって,α,βは2次方程式8-6x=-x(4-x)の2つの解であり,α>βからα=2,β=-4 教えてほしいところ bn=an-β/an-αとおくんだったら annot=αを前提に解いていくんですよね。ですから、そうして得られたαがすべてのnに対して annot=2ということを論じる必要があると思います。 何故、確認しなくていいんですか??

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 漸化式の…

    漸化式のα=pα+qを利用する方程式の教科書説明で 「p、qを定数、p≠1として漸化式が       an+1=pan+q で表されている時、この式がある値αを用いて       an+1-α=p(an-α) と変形できたとすると、数列{an-α}は公比pの等比数列になる。」ってところで、何故数列{an-α}なのでしょう?数列{an+1-α}ではないのでしょうか?

  • 隣接3項間の漸化式

    隣接3項間の漸化式 次の条件によって定められる数列{an}の一般項を求めよ (1)a1=1,a2=2,a(n+2)+4(an+1)-5an=0(括弧の部分は添え字です。以下括弧は省略します) 指針 隣接3項間の漸化式→まず、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解く。その2解をα、βとするとan+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan) が成り立つ。この変形を利用して解決する。 (1)できる方程式の解はx=1、ー5→解に1を含むから、漸化式はan+2-an+1=-5(an+1-an)と変形され、階差数列を利用することで解決 教えてほしいところ ・なぜ、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解くと、an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)を満たすα、βが求まるんですか?? ・α=1,β=ー5として an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)のどちらを利用しても同じ答えが出るのはなぜですか???

  • 数学の漸化式について

    わかりずらくてすみません>< a1=1, an+1=3an+4(n=1, 2, 3, ・・・・・) を満たす数列の一般項を求めよ。 という問題を解いていくと an+1=3an+4  X=3X+4 ・・・(1) を辺々引くと an+1-X=3(an-X) 一方、(1)よりX=-2だから an+1+2=3(an+2) よって、数列{an+2}は公比3の等比数列で an+2=3^(n-1)(a1+2)・・・※ ここなんです! ※の式のとこなんですが an+1+2=3(an+2) の(an+2)のとこが an+2=3^(n-1)(a1+2) なぜ(a1+2)に変わるのかを説明してほしいです! よろしくお願いします!

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

  • 漸化式の特性方程式

    いくつか質問があります。わかるものだけでもいいので回答よろしくお願いします。 ・「特性方程式」の解釈は、「特性を表す方程式」で合ってますか? ・なぜa_(n+1)=3a_n+2の特性方程式がc=3c+2なのですか? ・なぜ2a_(n+2)=3a_(n+1)-a_nの特性方程式が2x^2=3x-1なのですか? ・なぜ特性方程式の解である平衡値を漸化式の両辺から引けば、二項漸化式を等比数列型に変形できるのですか?

  • 漸化式

    数列{an}はa1=1 an+1=an/1+3anを満たす。bn=1/anとおくとbn+1=bn+ア であるから、an=1/イn-ウである。 この問題の解き方、解説をお願いします。 答えは an=1/3n-2となるようです。

  • お願いします

    数列{an}がa1=4,an+1=4an+8/an+6で定められている。 (1)bn=an-β/an-αとおく。このとき,数列{bn}が等比数列となるようなα,β(α>β)の値を求めよ。 (2)一般項を求めよ

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。