• ベストアンサー

∬1/√(x^2+y^2)dxdyの追加の質問です

何度もすいません。この問題なのですが、 D={(x,y)|0≦x≦1,0≦y≦1}での積分をするにあたって極座標変換をする時、どうして0≦θ<π/4のときがr=1/cosθで、π/4≦θ≦/2のときがr=sinθなのでしょうか。また今まで自分は円形の領域でしか極座標変換はできないものと思っていましたが今回の領域Dは正方形です。こういう場合でも極座標変換は使ってもよろしいのでしょうか。 当たり前のことなのかもしれませんが自分はイメージをつかむことができません。どうか解答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

積分領域D={(x,y)|0≦x≦1,0≦y≦1}を極座標に変換すると、この正方形領域は1つの式で表せないのでDを2つの領域(図のD1とD2)に分割することで領域を極座標で表すことが可能になります。 D=D1+D2 三角領域D1={(x,y)|0≦y≦x≦1}⇔{(r,θ)|r=1/cosθ,0≦θ<π/4} 三角領域D2={(x,y)|0≦y≦x≦1}⇔{(r,θ)|r=1/sinθ,π/4≦θ≦π/2} ここで D1の積分境界の極座標線分r=1/cosθ(0≦θ<π/4)は 線分x=1(0≦y≦1)に対応します。 またD2の積分境界の極座標線分r=1/sinθ(π/4≦θ≦π/2)は 線分y=1(0≦x≦1)に対応します。 極座標におけるr=f(θ)(θ1≦θ≦θ)の直線や線分の表現をしっかりマスターしましょう。 そうすれば、積分領域D1では極座標における積分範囲は0≦r≦1/cosθ,0≦θ<π/4となることが分かります。 また、積分領域D2では極座標における積分範囲は0≦r≦1/sinθ,π/≦θ≦π/2となることが分かります。 極座標の直線(線分)の表現に慣れれば、分かることです。 >こういう場合でも極座標変換は使ってもよろしいのでしょうか。 ぜんぜん問題ないですね。面積素で考えて積分領域を全部覆っていれば、積分領域の形が円形領域に限定する必要はないですね。ただ円形領域だと積分が簡単なので、極座標の積分問題が円形領域や扇形領域の問題が多く出題されているに過ぎないだけです。

b_bm_m2828
質問者

お礼

非常に分かりやすい説明ありがとうございます。自分はまだまだ勉強不足だということがわかりました。 回答してくださり本当にありがとうございました。

その他の回答 (1)

noname#171582
noname#171582
回答No.1

グラフ

b_bm_m2828
質問者

お礼

具体的なイメージをつかむことができとても参考になりました。 回答して下さって本当にあらがとうございました。

関連するQ&A

  • 重積分∫∫(x2+y2)dxdyを教えてください

    以下の重積分の回答を教えてください。 ∫∫[D](x^2+y^2)dxdy D={(x,y)|1≦x^2+y^2≦4} 間違ってるかも知れませんが、以下のように辿ってみました。 極座標に変換 x=r*cos(θ), y=r*sin(θ) より、 1≦r≦2 0≦θ≦2π ∫∫[D](x^2+y^2)dxdy =∫[0,2π](∫[1,2]r^2・rdr)dθ =∫[0,2π](∫[1,2](1/4*r^4)dr)dθ =∫[0,2π](16/4-1/4)dθ =∫[0,2π](15/4)dθ =15π/2 答えはあっているように思うのですが、正しいでしょうか。 特に経過式について、誤りやまずい点があれば教えてください。

  • ∬1/√(x^2+y^2) dxdy

    ∬1/√(x^2+y^2) dxdy D:0≦x≦y≦1  重積分する問題です。 y=xsinθで置換して考えると ∬1/cosθ dθdxとなります。 これを計算していくととてもややこしくなってしまい、うまく解を求められません。 とても困っていますので解ける方は解き方を教えて頂きたいです。ちなみに答えはlog(1+√2)です。

  • 重積分です

    D:0≦x≦√2、0≦y≦√2で ∫∫[D]√(x^2+y^2)dxdy 積分領域Dが正方形なので、極座標変換ができません うまい方法はありますか?

  • ∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}

    ∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x} という重積分について質問です。∫∫【D】2x|y|dxdyと∫∫【D】2xydxdyってどう違いますか? この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど、理屈としては、y座標が負になっている部分をx軸に関して折り曲げた結果として、図形がx軸に関して対称だったために、y座標が正の部分を2倍することになったと考えればよいのでしょうか? 言葉が下手で、伝わりにくい文章ですみません。

  • 重積分で体積を求める問題です。{(x,y,z)|√x/a+√y/b+√

    重積分で体積を求める問題です。{(x,y,z)|√x/a+√y/b+√z/c<=1}(a,b,c>0)の体積を求めよ。 自分は積分領域D:√x/a+√y/b<=1、x,y>=0としてx=ar^2cos^4θ、y=br^2sin^2θと置いてJ=8abcr3sin^3θcos^3θ,DをM:0<=r<=1,0<=θ<=π/2に写して計算したのですが答えが合いません。 どなたか教えていただけないでしょうか。正解はabc/90になります。

  • 重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>

    重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>0) D: x^2 + y^2 <= a^2を極座標 で解こうとしているのですが、うまくいきません。 本の答えの"(2πa^3)/3"まで、どうにか辿り着かせてください。m(__)m 自分がやったところまで書きますと、 0 <= r <= a (自信なし) 0 <= θ <= 2π √(a^2 - (r cos(θ))^2 - (r sin(θ))^2) =√(a^2 - r^2 cos(θ)^2 - r^2 sin(θ)^2) =√(a^2 - r^2(cos(θ)^2 + sin(θ)^2)) =√(a^2 - r^2) (この時点でθが残ってないのが怪しい…) ∫∫_D √(a^2 - x^2 - y^2) dxdy =∫∫_E √(a^2 - r^2) drdθ =∫[0,2π] dθ ∫[0,a] (a^2 - r^2)^(1/2) dr =∫[0,2π] dθ [(2/3)(1/2r)(a^2 - r^2)^(3/2)][0,a] (ここからまったく自信なし) =∫[0,2π] dθ [(1/3r)(a^2 - r^2)^(3/2)][0,a] =∫[0,2π] dθ [(1/3a)(a^2 - a^2)^(3/2)] - [(1/3(0))(a^2 - 0^2)^(3/2)] …0では割れないので間違っているはずです。 計算機で∫[0,a] (a^2 - r^2)^(1/2) drを解くと (a・|a|・π)/4 と出ます。これも正しいのか分かりません。 まずは、この問題でのrとθの範囲の取り方を教えてください。 お願いします。

  • 『楕円球体の三重積分を極座標変換を用いて解く』がわかりません。

    楕円球体の三重積分が ∫∫∫dxdydz で 積分領域が K={(x,y,z)|(x^2/a^2)+(y^2/b^2)+(z^2/c^2)≦1} と、与えられています。 この問題を極座標変換を使って解けと教科書に書いてあるのですが、 x=r(sinθ)(cosφ) y=r(sinθ)(sinφ) z=r(sinθ) というように、変数(r,θ,φ)に変換したときの積分領域K’がわかりません。 θやφについては  0≦θ≦π  0≦φ≦2π になるだろうとなんとなく予想できるのですが、 rに関してはどのような範囲になるか全くわかりません。 どなたか説明も入れてよろしくお願いします。

  • 三重積分の問題です。

    空間の極座標変換を用いて、次の積分の値を計算しなさい。 ∬∫(x^2+y^2+z^2)dxdydz、範囲がx^2+y^2+z^2≦a^2 です。 極座標変換で(r、θ、φ)={0≦r≦a                 0≦θ≦2π                 0≦φ≦2π}と範囲をおき、 x=r sinθ cosφ y=r sinθ sinφ z=r cosθ と変換しました。 ここから積分の仕方が少しわかりませんでした。 一生懸命考えてみたのですが、積分で詰まりました。 もしわかる人がいましたら教えてください

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • ∬sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1

    ∬_S sin(x+y)dxdyの解を求めよ。 ただしS:={(x,y);x≧0,y≧0,x^2+y^2≦1}とする。 と言う問題ですが、検索したところ類似問題の答えを見つけました。 以下をご覧ください。 -------------------------------------------------------------- この先生http://www.math.meiji.ac.jp/new/35.htmlの http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf の中の2.の(5)の答えは"2"になっております。 ------------------------------------------------ さて、ちょっとややこしいのですが、上記二者は全く同じ問題ではないので、こことは別なあるご相談サイトで前者の問題 ∬_S sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1・・・・・について質問したところ、次のような回答がありました。 その回答の抜粋;”私も積分値が何なのかは知りませんが、積分領域の S の面積がπ/4 で、sin(x+y)≦1 なので積分値はπ/4 以下になります。” あとで気づいたのですが、この記述は、 http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf の答えと矛盾するような気がしますが、どうでしょうか? 当方独学の部分が多いため、わからなくなって困っております。宜しくお願い致します。