• ベストアンサー
  • 困ってます

解の存在条件

x^2+y^2=1・・(1),y=x+k・・(2) 実数解(x,y)が存在するためのkの値の範囲を 求めよ。 (1)に(2)を代入して、まとめると、2x^2+2kx+k^2-1=0 これが実数解をもつから、 判別式から、-√2=<k=<√2と解答にはあります。 実数解xは(1)の条件から、-1=<x=<1に存在しなければならないから、 判別式の条件に、、-1=<x=<1に存在するという条件を付け加えなければならないと 思うのですが、どうしてなくてもいいのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数8
  • 閲覧数58
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • info22_
  • ベストアンサー率67% (2650/3922)

#3です。 A#3の補足について 疑問は >2x^2+2kx+k^2-1=0…(A) のグラフを描けば明らかです。 横軸にk,縦軸にxをとってこのグラフ(黒線の楕円になる)を描いて添付します。 このグラフのkの範囲:-√2≦k≦√2で xの範囲:-1≦x≦1 となります。 (A)を満たすxの実数条件(実数xの存在条件)としての判別式D≧0から導出した範囲がkの範囲:-√2≦k≦√2の範囲です。 >(A)を満たす実数解xは(1)を満たすので、当然(1)式のxの条件は含んでいますので、 >当然(1)式のxの条件は含んでいます。なので「-1=<x=<1」の条件は不要(冗長)です。 >上のことは >実数解xが存在するとすると、それは「-1=<x=<1」に存在するということになるということですね。 (1)と(2)の式から導かれた(A)のグラフを見れば(1)の範囲の条件が含まれていることが明らかでしょう。 >それはx^2+y^2=1 の式が持っている条件としての「-1=<x=<1」を引き継いでいるから、 >存在するとしたら、「-1=<x=<1」ここにあるということになるのですか。 >くどい感じになりましたが、分かった気になっています。 グラフから納得できませんか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

何度も回答ありがとうございます グラフをみれば-1=<x=<1の条件は必要ないことが一目瞭然で、納得できるのですが グラフを用いないとどう解釈すればよいか疑問に思いました。

関連するQ&A

  • 解の存在する範囲

    ///問題/// xの2次方程式 x^2+2ax+4a^2+2a=0 (aは実数の定数)がある。 この方程式の実数解のとり得る値の範囲を求めよ。 ///解答/// この方程式の実数解をαとすると、代入して α^2+2aα+4a^2+2a=0 aについて整理すると 4a^2+2(α+1)a+α^2=0 求めるものは、この方程式を満たす実数解aが存在するような実数αの条件である。 よって、aの方程式と考えて判別式をDとすると D≧0 D/4=(α+1)^2-4α=-3α^2+2α+1であるから -3α^2+2α+1≧0より 3α^2-2α-1≦0 (3α+1)(α-1)≦0をといて -1/3≦α≦1 したがって、実数解の存在する範囲は-1/3≦x≦1 なんでaについて整理するんでしょうか? xについてじゃだめなんですか? あと問題文の >この方程式の実数解のとり得る~ のあたりもよくわからなくなってきました。 実数解ってグラフにしたときにx軸と放物線がくっつくところと考えてたんですけど違うんでしょうか…?

  • 実数解を持つ条件 2次関数

    kを定数とする、2つの2次方程式 2x^2-5x+k=0  ・・(1) x^2+2kx+k^2-k+1=0 ・・(2) について(1)、(2)がともに実数解を持つとき定数k の値の範囲を求めよ。という問題ですが 判別式を使うと実数解を持つのでD≧0ですよね。 自分でやってみました。 (1)25-8k≧0で k≦25/8 (2)4k-4≧0で k≧1 両方を満たさなければならないので 1≦k≦25/8という答えでいいのでしょうか? 全く自信ない答えなのですが、、。

  • 実数解が存在するための条件

    x,y,z,a,bは実数とする。 x^2+y^2=a,y^2+z^2=b,y(x+z)=1 を満たすx,y,zが存在するためのa,bの条件を求めよ。 既出の行列の問題でどうしても分からないので、再度の形に なりますが、よろしくお願いします。 次のように考えましたが、間違っているのは、分かるのですが、 どう改善すればよいのかわかりません。 x^2+y^2=a,y^2+z^2=b,から、(x-z)(x+z)=a-b .......(1) y(x+z)=1より、x+z=1/y ..........(2) (2)を(1)に代入して、x-z=y(a-b) .......(3) (2)^2-(3)^2より、xz={1/y^2-y^2(a-b)^2}/4 x,zを解とする方程式は、 A^2-1/yA+1/y^2-y^2(a-b)^2}/4=0 これが、実数解をもつから、 判別式=y^2(a-b)^2>=0となり、a,bが何であろうと必ずx,zは実数解をもつ。 また、x^2+y^2=aだから、a>0,同様にb>0 よって、a>0,b>0 (となるが、行列式の値から、少なくともab>1となること(回答で指摘頂いた)はわかるので、a>0,b>0は 間違っているのは分かる。)

その他の回答 (7)

  • 回答No.8
noname#149523

x^2+y^2=1・・(1) y=x+k・・(2) (1),(2)を満たす実数解(x,y)が存在する・・(3) kの範囲は?である・・(4) この問題は((1),(2)という前提のもとで)、(3)⇔(4)となるkの範囲を求めよ、という問題だと解釈できる。 (4)を、-√2≦k≦√2 とすれば (3)⇔(4)なのでそれが答。

共感・感謝の気持ちを伝えよう!

  • 回答No.7
  • Tacosan
  • ベストアンサー率23% (3656/15482)

う~ん, 大丈夫なのかなぁ.... 正直私にはなぜそこまで -1≦x≦1 に固執するのか理解できないんだけど.... #2 にはこっそり, また #5 にはもっとはっきり書いたんだけど, この問題において「-1≦x≦1」というのは直接的な条件ではないですよね. 本当にぎりぎりのところまで言い出すと, 実は「判別式から」というところすら問題になるってわかってます?

共感・感謝の気持ちを伝えよう!

  • 回答No.6

定義域を「暗に含む」式を変形したとき、 定義域が「暗に含まれなくなる」なら、 変形後の式に別途定義域を明示してやる必要があります。 具体的な例をあげてみます。 y = √x のとき、x, yの定義域は x ≧ 0, y ≧ 0 ですが、 これを単純に辺々2乗してしまうと、 y^2 = x となり、y ≧ 0 が見えなくなってしまいます。 ですから、 y = √x ⇔ y^2 = x , y ≧ 0 と定義域を引き継いでやる必要があります。 今回の問題で、(2)式を代入したあとの式を見ると、 x^2 + (x+k)^2=1 … (3) となり、|x|≦1 はまだ式の中に含まれています。 # x^2 + ○^2 = 1 と書けば分かりやすいですね。 ですから、これ以上式の外に「|x|≦1」と書いてやる必要は無いのです。 (3)式を経由せずに、いきなり展開した形を見ると、 確かに定義域をフォローしたくなりますね。 しかし、(3)式を見れば、それが不要なのが分かります。

共感・感謝の気持ちを伝えよう!

  • 回答No.5
  • Tacosan
  • ベストアンサー率23% (3656/15482)

問題の条件からいえば「x が -1≦x≦1 の範囲にあること」よりも「(x と) y が実数であること」の方が (同値だけど) 本質ではないでしょうか. そして, 後者の条件は (2) から (x が実数であれば) 自動的に成り立ちます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます xが実数解なら、それは-1=<x=<1であることが、(1)の式から 十分であるということだと理解しました。

  • 回答No.3
  • info22_
  • ベストアンサー率67% (2650/3922)

>-1=<x=<1に存在するという条件を付け加えなければならないと 思うのです >2x^2+2kx+k^2-1=0 を満たす実数解xと(2)に代入した得られるyの組(x,y)は(1)を満たすので、当然(1)式のx,yの条件は含んでいます。なので「-1=<x=<1」の条件は不要(冗長)です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 2x^2+2kx+k^2-1=0 を満たす実数解xは(1)を満たすので、当然(1)式のxの条件は含んでいますので、当然(1)式のxの条件は含んでいます。なので「-1=<x=<1」の条件は不要(冗長)です。 上のことは 実数解xが存在するとすると、それは「-1=<x=<1」に存在するということになるということですね。 すなわち それはx^2+y^2=1 の式が持っている条件としての「-1=<x=<1」を引き継いでいるから、存在するとしたら、「-1=<x=<1」ここにあるということになるのですか。 くどい感じになりましたが、分かった気になっています。

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

図形的に考えれば「その条件を加えるまでもなくそのようなものしか現れない」ことは一瞬で分かる. 丁寧にやるなら「x が実数なら (2) より y も実数」とでも言っておく.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます 実数解xが存在するとするとそれは円のグラフから-1と1の間に なるのは、わかるのですが、グラフを使わないで、kの値をもとめていくとしたら 式変形のどこの段階で、「-1=<x=<1に存在する実数であるという条件」が必要ないと 判断できるのでしょうか。愚問であったら失礼。

  • 回答No.1

簡単な事だろう。 k=√2の時、2x^2+2kx+k^2-1=(√2*x+1)^2=0より、x=-1/√2となるから、|x|≦1が確認できる。 k=-√2の場合も同じ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数I方程式と不等式の問題

    【問題】 2つの二次方程式 x^2+kx+2=0・・・(1) x^2+2x+k=0・・・(2) が共通の実数解をもつように定数kの値を定めよ 【解答】 (1)&#65293;(2)より、 (k&#65293;2)x+2&#65293;k=0 (k&#65293;2)(x&#65293;1)=0 ∴k=2またはx=1 (i)k=2のとき、(1)、(2)はともにx^2+2x+2=0となるが、判別式D/4=1-2=-1<0より、実数解をもたない (ii)x=1のとき、これが(1)、(2)の解になる条件は、 3+k=0よりk=&#65293;3 以上より、求めるkの値はk=&#65293;3である ↑問題集の解答はこのようにになっています ちなみに私は (1)+(2)で2x^2+(2+k)x+2+k=0 この判別式D=(2+k)^2&#65293;8(2+k)         =(k+2)(k&#65293;6) と、(1)&#65293;(2)ではなく(1)+(2)をしてしまいました。 なぜ足すとどこがどういけないのか分からないのですが、説明できる方がいたらお願いします…

  • 解と係数の関係

    2次方程式 x^2+2mx+6-m=0 が、1より大きい異なる2つの実数解を持つとき、定数mの値の範囲を求めよ。 という問題で、 判別式より m<-3,2<m ・・・(1) α>1 かつ β>1 より α+β>2 αβ-(α+β)+1>0 α+β=-2m αβ=6-m よって、-7<m<-1 ここで質問です、αβ-(α+β)+1>0,をαβ>1,となぜしてはいけないのですか?

  • 高校の数学を教えてください。

    方程式2x2+(a&#65293;1)x+(a+1)2=0について ※2xの2乗+(a&#65293;1)x+(a+1)の2乗=0です。 (2) 実数解をもつとき,その実数解のとりうる値の範囲を求めよ。 がわかりません。  実は,問題集に乗っていた問題なので解答があります。解答には,与式をaの2次方程式:a2+(x+2)a+2x2&#65293;x+1 とみて,aが実数解をもつため判別式D=(x+2)2&#65293;4(2x2&#65293;x+1)>=0の条件から 答:0<=x<=8/7(xは0以上8/7以下)としています。  xが実数解をもつという条件で考えるはずなのに,解答はaが実数解をもつ条件を考えています。さっぱりわかりません。おわかりになる方,ご教授願えませんでしょうか。よろしくお願いします。  ちなみに,(1)は, 「2つの整数解をもつように,定数aの値を定め,その解を求めよ。」です。

  • 逆に・・・

     十数年来の疑問を解決したいと思い、ここで質問させて頂きます。大した話しではないのですが・・・。  少なくとも昔の受験問題では、   (1) k^2+2(x+y)k+(2xy+1)=0において、kが実数だとする。(x,y)の範囲を図示せよ。   (2) k^2+2(x+y)k+(2xy+1)=0において、kが任意の実数だとする。(x,y)の範囲を図示せよ。 といった問題が出ていたと思います。お聞きしたいのは、以下に示す解答に逆の検査が必要かどうかですが、まず私には、(1)と(2)が問題として別物に見えます。 (1)の場合  (1)は、可能な全ての実数kに対する(x,y)の満たすべき範囲と、読めます(私には)。字数を少なくしたいので、通常よりも切り詰めて書きますが、   与式においてkが実数 ⇔ 与式の判別式D≧0 なので、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 が解答であり、ここで、   与式の判別式D≧0 ⇒ 与式においてkが実数 を証明しようとしたら、必要十分性を分かっていないとして、減点対象になってもおかしくないと思います。 (2)の場合  (2)は、任意の実数kなので、少なくとも判別式0以上ということで、   与式においてkが任意の実数 ⇒ 与式の判別式D≧0 という事になり、十分性の証明が必要と思えます。(x,y)が、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 を満たしたところで、kが任意の実数をとれるかは、わからないので。私には、これくらいしか考えつけないのですが、逆を言うために(Rは実数全体)、   A={k∈R|k^2+2(x+y)k+(2xy+1)=0 かつ D=x^2+y^2-1≧0} とします。  k∈Rとすれば、そのkについて、   k^2+2(x+y)k+(2xy+1)=0 すなわち、   2(x+k)y=-2x-k^2-1 を満たす(x,y)は、x≠-kであれば、   y=-(2x+k^2+1)/2/(x+k) なので存在し、kは与式を満たす実数なので、k∈A。  x=-kの場合は、   0=2k-k^2-1 となるので、   k^2-2k+1=(k-1)^2=0 ⇒ x=-k=-1(y任意) ⇒ kは与式を満たす実数なので、k∈A となる。従ってR⊂Aであるが、A⊂Rは明らかなので、A=R。  この証明は、少なくとも高校レベルでは、決して易しくないと思います。  何を言いたいかというと、(1),(2)の模範解答に関して、逆の証明を行っているのを見た事がない、という事です(これは、はっきり記憶しています)。その理由なのですが、  (a) (1)と(2)が同じものだと、多くの場合誤解(?)されている.  (b) (2)で逆の証明が難しいので、省略された. と思っていたのですが、考えすぎでしょうか?

  • 解と数の大小

    aは実数とする。xの2次方程式x^2+2ax+2a^2-5=0について 2つの解がともに1より小さいときのaの値の範囲と、1つの解が1より大きく、他の解が1より小さいときのaの値の範囲を知りたいのですが、これは解と係数の関係を使えばいいのでしょうか? 解の判別式で解けるのでしょうか? 両方試してみたけれど、解けませんでした。 わかる方がいたら教えてください。 お願いします!!

  • x>0,y>0で、x^2+xy+y^2=3のとき、2x+yの値の範囲を

    x>0,y>0で、x^2+xy+y^2=3のとき、2x+yの値の範囲を求めよ。 以下のように解けますが、別解をお願いします。 k=2x+yとおく。y=k-2xをx^2+xy+y^2=3に代入して 3x^2-3kx+k^2-3=0 この解が、0<x<k/2に存在する 条件をもとめる。y=3x^2-3kx+k^2-3とおいて 軸は、k/2 より、判別式>0、x=0のとき、y>0 この2つの条件を求めればよい。

  • 2次関数

    解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。

  • aは実定数 2次方程式 x^2-2x+a-1=0 の解2つの異なる解が

    aは実定数 2次方程式 x^2-2x+a-1=0 の解2つの異なる解が異符号のとき、aの値の範囲を求めよ。 2つの解をα,βとしたとき、異符号であり、解と係数の関係から、αβ<0 よって、a-1<0より、a<1 解答にα,βの実数条件 判別式>0をいれなくてもよいのか。それともいれなければいけないのか。 私はいれなければならないと思うのですが、よろしくお願いします。  

  • 極値をもつ条件

     高等数学IIIについての質問です。  関数 f(x)=x+1/x^2+2x+a について、f(x)が極値を持つようなaの値の範囲を求めよ。  この問題について、まず f'(x)=0 となるようなxの値が存在するようにaの値の範囲を定めます。  ちなみに f'(x)=-(x^2+2x-a+2)/(x^2+2x+a)^2 です。  ここで、まず私は f'(x)=0 の両辺に -(x^2+2x+a)^2 を掛けて分母を払い(ついでに分子のマイナスも消去)、その後 x^2+2x-a+2=0 が実数解を持つような、つまり判別式Dについて D≧0 となるようなaの値の範囲(この場合a≧1となります)を求めましたが、実際は D=0 は含まれず、D>0となるようなaの値(a>1となります)を求めなければいけなかったようです。  確かに D=0 、つまり a=1 の時 f(x)=1/x+1 となってしまい極値は持ちませんが、問題の解説では後でD≠0であることの確認をしているわけではなく、いきなりD>0としているので、何か別の判断理由がありそうなのです。その理由はなんなのでしょうか。教えていただけたら幸いです。よろしくお願いします。

  • 実数解条件

    y=x+1/x(xは0以外の解をもつ)とき、実数解条件を求めよ。 …という問題の時、x^2ーyx+1=0として、判別式D≧0としますが、 このときは、yがどの値でもx≠0だから、D≧0で良い、という認識でいいですか? たとえば、今例が思いつかないんですが、yがaの値の時に、x=0が成り立つとしたら、答えはD≧0で出たyの範囲&#10133;x=0 が成り立つ時のyの値は除く、という認識であってますか? &#11014;&#65038;この前提でいくと、ax^2+bx+cのときの実数解条件はどうなりますか? 普通に、x=0 が成り立つ場合と成り立たない場合で分けて考えればいいんでしょうか。 5