• ベストアンサー
  • 困ってます

実数解を持つ条件 2次関数

kを定数とする、2つの2次方程式 2x^2-5x+k=0  ・・(1) x^2+2kx+k^2-k+1=0 ・・(2) について(1)、(2)がともに実数解を持つとき定数k の値の範囲を求めよ。という問題ですが 判別式を使うと実数解を持つのでD≧0ですよね。 自分でやってみました。 (1)25-8k≧0で k≦25/8 (2)4k-4≧0で k≧1 両方を満たさなければならないので 1≦k≦25/8という答えでいいのでしょうか? 全く自信ない答えなのですが、、。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数662
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

完璧、正解です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。ちょっとだけ自信がもてました。高校になったらなんだか突然数学が難しくなって得意なはずの数学が少~し嫌いになりそうでした。でもdebutさんのプロフィールとか読んで又頑張ろうと思いました。

関連するQ&A

  • 解の存在条件

    x^2+y^2=1・・(1),y=x+k・・(2) 実数解(x,y)が存在するためのkの値の範囲を 求めよ。 (1)に(2)を代入して、まとめると、2x^2+2kx+k^2-1=0 これが実数解をもつから、 判別式から、-√2=<k=<√2と解答にはあります。 実数解xは(1)の条件から、-1=<x=<1に存在しなければならないから、 判別式の条件に、、-1=<x=<1に存在するという条件を付け加えなければならないと 思うのですが、どうしてなくてもいいのでしょうか。

  • 異なる2つの実数解をもつ(高校数学II)

    2次方程式 x^2+(a-2)x+4=0が、次の条件を満たすとき、定数aの値またはその値の範囲を求めよ。 (1)重解をもつ (2)異なる2つの実数解をもつ (1)は判別式を使ってa=-2,6という答えを出せたんですけど、(2)のやり方がどんなに考えてもわかりません。だれかわかる方教えてください・・・。 ※答えはa<-2,a>6となるんですけど・・・。

  • 2次方程式が実数解を持つ範囲

    こんばんは、宜しくお願いします。 2次方程式 x^2-(8-a)x+12-ab=0が定数aの値に関わらず実数解を持つときの定数bの範囲を求めよ。 まず、実数解とあるので重解でもよいから判別式D≧0ですよね。 それで、D=a^2+4(b-4)a+16ですね。 ここで、ここからの進め方が分らなかったので答えを見ると、 ”aの2次方程式=a^2+4(b-4)a+16の判別式を新たにDaとおくとD≧0となる条件はDa/4≦0でなければいけない。”とあるのですが、わからないです。 なぜDa/4≧0ではなくDa/4≦0なのでしょうか? よろしくおねがいします。

  • 解と係数の関係

    2次方程式 x^2+2mx+6-m=0 が、1より大きい異なる2つの実数解を持つとき、定数mの値の範囲を求めよ。 という問題で、 判別式より m<-3,2<m ・・・(1) α>1 かつ β>1 より α+β>2 αβ-(α+β)+1>0 α+β=-2m αβ=6-m よって、-7<m<-1 ここで質問です、αβ-(α+β)+1>0,をαβ>1,となぜしてはいけないのですか?

  • 2次関数の問題が分からないので教えてください。

    (1)次の2次不等式を解いてください。 ・3x^2+12x+14≧0 ・14x&#65293;49≧x^2 ・3x^2+4>2x(x+2) (2)2次方程式 x^2&#65293;(m+2)x+2(m+2)=0 が実数解をもつように、定数mの値の範囲を定めてください。 (3)2つの放物線 y=x^2+kx+k、y=x^2&#65293;2kx+k+6がともにx軸と共有点をもつとき、定数kの値の範囲を求めてください。 ちなみに答えは、 (1)・すべての実数   ・x=7 ・x<2、2<x(2以外のすべての数) (2)m≦&#65293;2、6≦m (3)k≦&#65293;2、4≦k

  • 2次関数

    解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。

  • 実数解

    3つの2次方程式は少なくとも1つは実数解を持つことを示す問題です。 だたし、a,b,cは実数とします。 (x^2)+3ax+2b-1=0 …(1) (x^2)+2bx+2c-1=0 …(2) (x^2)+2cx+2a-1=0 …(3) (1)の判別式は D/4=(a^2)-2b+1 (2)の判別式は D/4=(b^2)-2c+1 (3)の判別式は D/4=(c^2)-2a+1 となりましたがどのようにして少なくとも1つは実数解ということを探すのでしょうか?

  • 2次関数の実数解

    f(t)=t^2+2at+3a 《tの存在範囲はt≧2,t≦-2でありaは定数》という式でf(t)=0が少なくとも1つの実数解を持つとき定数aのとりうる範囲を求めよ。  という問題でaが普通の数字であれば解けるのですが、文字になったとたんさっぱりわからなくなりました。判別式でやろうにも解けませんしお手上げ状態です…どなたか教えていただけないでしょうか? 続く問題がf(t)=0は最大で何個の実数解をもつかなのですが、これは自分で解きたいのでヒントをお願いできないでしょうか?

  • 実数解の個数について

    実数解の個数について xの方程式kx^2+2x-3=0の実数解の個数を求めよ。 という問題なのですが、答えは0>k>-1/3のとき2つ、k=-1/3,0のとき1つ、 k<-1/3のとき実数解はなしとなるそうです。 私はこの問題を判別式を使って考えたのですが、0>kとk=0の求め方がわかりません。 何方かよろしくお願いいたします。

  • 2次関数の解を持つ条件

    “2次方程式X^2-aX+4=0の2つの解がともに1と8の間にあるように、定数aの値の範囲を定めよ”という問題の解説で、判別式D≧0となっていました。自分は判別式D>0としてといていました。問題文で“2つの解”と言っているので重解は考慮に入れる必要はないと考えたのですがこの考え方は間違っているのでしょうか? また、f(X)=X^2-aX+4とおいて、このグラフの端について考えたとき、解説ではf(1)>0、f(8)>0として計算しているのですが、僕はf(1)≧0、f(8)≧0として計算しました。問題文の“1と8の間”というのはf(1)=0、f(8)=0を含むと考えるのは間違いなのでしょうか?宜しくお願いします。