• ベストアンサー

大学数学の質問です。

大学数学の質問です。 V=R^3のとき W1がW22次元部分空間のときW1かつW2≠{0}であることを示せという問題なのですが、 W1={(x,y,z)∈V|ax+by+cz+d=0},W2={(x,y,z)|ax+by+cz+f=0}ただしa,b,c,d,fは任意のスカラーとしたときW1とW2は共通部分をもたないのではないかと自分は思ってしまいます。 この問題の証明方法と自分の考えはどう間違っているのかをおしえていただけないでしょうか??

質問者が選んだベストアンサー

  • ベストアンサー
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.2

問題文が日本語になっていないので、とりあえず 「V=R^3とし、W1とW2がVの2次元部分空間のとき、W1とW2の共通部分≠{(0,0,0)}であることを示せ」 と修正してお答えします。 ただ、この修正文でも重大な欠陥があります。R^3にどんな数学的構造を想定するかによって「2次元部分空間」の意味がまったく違ってくるのです。想定している構造を明確にしない限り、この問題は意味を成しません。 普通、想定されることが多いのは、次の2種類の構造です。  (1) 3次元のユークリッド空間(位相空間としての構造)  (2) 3次元のベクトル空間(代数構造) もし、(1)の構造を想定するなら、質問者様の考えは正しいです。掲げられている例で、a=b=d=0、c=1、f=-1とすれば、   W1={(x,y,z)| z=0}   W2={(x,y,z)| z=1} ですから、W1はxy平面、W2はxy平面の上方にxy平面と平行に広がる平面です。よって、W1とW2は共通部分を持ちません。 しかし、この問題は、(2)の構造を想定していると思われます。そうすると、上の例のW2は、部分空間ではありません((x1,x2,x3)と(y1,y2,y3)がW2の元だったとしても(x1+y1, x2+y2, x3+y3)がW2の元とは限らないから)。 一般に、3次元ベクトル空間R^3の2次元部分ベクトル空間は、適当な実数a,b,cにより、   {(x,y,z)| ax+by+cz=0} 表されます。ただし、a,b,cのうち少なくとも1つは0でないものとします。 したがって、任意の2つの2次元部分空間の共通部分が(0,0,0)だけでないことを証明するためには、3元連立方程式   a1x+b1y+c1z=0   a2x+b2y+c2z=0 が(0,0,0)以外の解を持つことを示せばよいのです。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

とりあえず「W1がW22次元部分空間」の意味がわからんので直してください. あと, 「部分空間」という条件を忘れていませんか?

関連するQ&A

  • 大学数学の質問です。

    大学数学の質問です。 V=R^3のときVの部分空間W1とW2の次元が2のときW1かつW2≠{0}であることを示せという問題なのですが、 W1={(x,y,z)∈V|ax+by+cz+d=0},W2={(x,y,z)|ax+by+cz+f=0}ただしa,b,c,d,fは任意のスカラーとしたときW1とW2は共通部分をもたないのではないかと自分は思ってしまいます。 この問題の証明方法と自分の考えはどう間違っているのかをおしえていただけないでしょうか??

  • 空間図形の点と直線の距離の公式について

    xyz空間内の点P(p,q,r)から平面ax+by+cz=dにおろした垂線の長さを求めよ という問題(というか公式を示す証明)を見たときに、 (解) 平面ax+by+cz=dに垂直なベクトルのひとつを v→=(a,b,c) とする。平面ax+by+cz=d上にA(x0,y0,z0)をとると、求める長さは h=|AP→・v→|÷|v→| である。 (x0,y0,z0)がax0+by0+cz0=dを満たすことから、 h=|AP→・v→|÷|v→| =|(p-x0,q-y0,r-z0)・(a,b,c)|÷√(a^2+b^2+c^2) =|ap+bq+cr-d|÷√(a^2+b^2+c^2) となっていたのですが、どうしても h=|AP→・v→|÷|v→|である。 の部分が理解できません。検索して調べてみても分からず、結局内積とはなんだろう?と言うところまで調べてみたのですが、2つのベクトルがどれだけ似ているかを示す量、とだけ書いてあるくらいでさっぱり分かりません。 そこで、 (1)なぜ、hが上の式のようになるのでしょうか? (2)幾何学的な意味としては内積は何を表すものなのでしょうか? 以上2点、よろしくお願いいたします。

  • 線形代数学の質問です。

    線形代数学(?)についてノートが紛失しまって分からない問題が複数あるので教えてください(__ これから連休なので友達にも先生にも会えません。 お願いしますorz 1つめが... R^3の平面W={(x y z)∈R^3 | ax+by+cz=0}は部分空間となる事を示せ。 一方でd≠0とするとき、平面W´={(x y z)∈R^3 | ax+by+cz=0}は部分空間でない事を示せ。 2つめが... R^nのべクトルvを一つ固定する。このとき、R^n内の直線V={kv | k∈R}はR^nの部分空間となることを示せ。 3つめが... R^nのお互いに平行でないベクトルv,wを固定する。このとき平面、W={sv+tw | s,t∈R}は部分空間となることを示せ。 お願いします。

  • 三次元ユークリッド空間上の直線の方程式は?

    三次元ユークリッド空間上で,直交座標を x, y, z とする時, 任意の平面は,a, b, c, d を実数として(abc ≠ 0), ax + by + cz + d = 0 で表されます. では,三次元ユークリッド空間上の任意の或る一つの直線の方程式は, 直交座標を x, y, z とする時,一般的に,どの様に表現されるのでしょうか? どなたか,教えて下さい.

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 高校数学で、

    次の問題が、よくわかりません。 a≦b≦c , x≦y≦z のとき、次の不等式を証明せよ。 (a+b+c)(x+y+z)≦3(ax+by+cz) どうかよろしくお願いします。 

  • ある平面に対する座標変換

    空間上に(x,y,z)の点があるとします。 この点を、ある平面 ax + by+ cz + d = 0 から見た時の値(x',y',z')に変換したいのですが、どうやったらいいかわかりません。 座標系が、xyz-座標から新しい座標系、x'y'z'-座標に変わるのですが、どうやれば、いいかわかりません。回転させるだけなら、それほど、難しくないと思うのですが、それだけじゃないので、わからないです。 よろしくお願いいたします。

  • 4次元空間の超平面で、パラメータを消去するには?

    4次元のxyzw直交空間を考えます。 直線は、パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s のように書けて、パラメータを消すと、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] のように書けます。 平面(?)は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t のように書けますが、パラメータを消すとどうなるのでしょうか? 超平面は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u のように書けますが、パラメータを消すとどうなるのでしょうか? おそらくAx+By+Cz+Dw+E=0のように書けるとは思いますが、それらの係数は具体的にはどのような形なのでしょうか? 3次元空間の平面の場合には、この最後の問いは、2つの3次元ベクトルの外積で表されると思うので、今回の設定を4次元にしてみました。

  • 線形代数の次元について

    線形代数学の問題です。 数ベクトル空間V=R^4の部分空間W1,W2を W1={t(x,y,z,ω)∈R^4 ; 2x+y+3z+7ω=0,5x-2y+5z+9ω=0} W2={t(x,y,z,ω)∈R^4 ; -x+y+2z+6ω=0,4x-4y+2z+ ω=0} と定めるとき (1)W1,W2の次元をそれぞれ求めよ (2)部分空間W1∩W2の次元を求めよ (3)部分空間W1+W2={ω1+ω2 ; ω1∈W1,ω2∈W2}の次元を求めよ (1)(2)(3)それぞれ理由も記すこと (1)はW1の次元が2、W2の次元が1となったのですが確信がありません よろしくお願いします。

  • 高校数学  数と式

    x+y+z=5、3x+y-15を満たす任意のx、y、zに対して常にax²+by²+cz²=5²が成り立っている時定数a、b、cを求めよ。 答えだけでなくやり方も教えていただけると助かります。 よろしくおねがいします。