• ベストアンサー
  • 困ってます

位相の問題です。

位相の問題です。 X:位相空間 X^2:積空間 A:X^2の部分空間 A= {(x,x)∈X^2 | x∈X}とXは同相である事を示せ。 写像 f:X→A とするとf:x→(x,x) (x∈X) と置けば明らかに全単射なのですが fもf^-1連続写像である事をどう証明するのかわかりません。 分かる方いましたらよろしくお願いいたします <(_ _)>

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数101
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>fもf^-1連続写像である事をどう証明するのかわかりません。 ということは,Aにどのように位相が入っているのか 分かってないのですね? まずは積位相の定義を理解しましょう. #ちなみに,f^{-1}の連続性は積位相の定義より「自明」だったりする. #fの連続性は,素直に「連続の定義」「積位相の定義」に従えばいい.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 位相幾何学に関連した証明問題です。

    X,Yを2つの位相空間とする。 写像f:X→Yが全単射で、連続であるとき、fが同相写像となるためには、fが開写像(または閉写像)となることが必要十分である。 これを示せ。 詳しい証明お願いします。

  • 位相数学の証明問題です。

    位相数学の証明問題です。 以下の証明を,どなたか分かる方,お願いします。 R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ。 ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう。

  • 位相数学の証明問題です.

    以下の証明を,どなたか分かる方,お願いします. (1)R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ. (2)R^2とR^2 - { (0,0) }(原点を除いた平面)は同相(※)でないことを示せ. ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう.

  • 位相空間の同相について

    位相空間(X,Ox)と(Y,Oy)で、全単射f:X→Yに対して、fおよび逆写像f^(-1)がともに連続であるときfを位相写像といい、f:X→Yなる位相写像が存在するとき、(X,Ox)と(Y,Oy)は同相(同位相)であるというのでした。 位相空間(X,Ox)に対し、直積空間X×Xに適当な位相O’を入れたとき、 (X×X , O')と元の位相空間(X,Ox)は同相ではないと思うのですが、証明はどのようにしたらいいでしょうか。 位相写像が存在しない、ということを言えばいいと思いますが、存在しない、ということをどのように示したらいいのかがわかりません。 よろしくお願いします。

  • 同相の問題の考え方。

    [a,b]と(a,b)が同相であるか?という問題です。 これをときたいのですが証明の方法が分かりません。 今考えているのだと、 compact空間からHausdorff空間への全単射連続写像fは位相写像である という定理を使って同相を調べるのかと思ったのですが、そこから先へ進めません。 これをつかってというのは間違っているのでしょうか。 またチガウのであればアドバイスをお願いします。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 集合と位相

    位相空間X、Yの間の2個の連続写像が稠密な部分集合の上で一致すれば2個の写像は等しい。という命題なのですがYがハウスドルフ空間という条件がないので正しくないということまではわかりました。あと反例も探しているのですがイメージがよくわかなくて反例がわかりません。X、Yと二個の連続写像それぞれに具体的なものを当てはめるのですか?助けてください

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。