• ベストアンサー
  • 困ってます

極限値の求め方が分かりません

極限値の求め方が分かりません 例 (1)-2/{√(1-2/x)-1} (x→∞) (2)(x^2+x-12)/(x-1) (x→3) (3)(x^2-9)/(x^2-5x+6) (x→3) (4)(x^2-7)/(x^2-5x+6) (x→3) (1)はx→∞のとき,2/x→0なので分母→0 よって(1)→∞ (2)はx→3のとき,分子→0,分母→2 よってx=3を代入して(2)→0 (3)はx→3のとき,分子→0,分母→0 そこで式を変形すると(x+3)(x-3)/(x-2)(x-3)=(x+3)/(x-2) ここでx=3を代入して6 ここで分からないことがあります. ・分母→0のとき 分子→0なら,式を変形し,分子が0に収束しないならそのままx=αを代入できるのですか? ・(4)((3)のように割れない)はどうなるのですか? ・こういう問題ではどういう決まりがあるのですか?(∞-∞や∞/∞に収束するような形はだめ.など)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数160
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • math-wo
  • ベストアンサー率71% (10/14)

>・分母→0のとき  分子→0なら,式を変形し,分子が0に収束しないならそのままx=αを代入できるのですか? 分子を変形しても分母→0のままだと代入は出来ません。 (3)のようにx→3のとき0になる因子(x-3)が約分で分母分子から消えたので、この場合は代入できます。 >・(4)((3)のように割れない)はどうなるのですか? まず、分母→0だったら+∞に発散であるとは限りません。 分母→+0なのか分母→-0なのかを判断しなければなりません。 たとえば(1)で、√が√(1+2/x)だった場合は-∞に発散します。 x→∞のとき2/x→0ですが2/x=0とはなりません。あくまでx>0ですから正の範囲で0に近づいているわけです。となると√(1+2/x)は1よりほんのわずかだけ大きくなりますから、式全体で分母√(1+2/x)-1は正の範囲で0に近づいていきます。つまり分母→+0というわけです。このときはじめて+∞に発散だと分かります。この場合は分子が-2なので-∞に発散となるわけです。 で、(4)の場合はというと、式変形で(x^2-7)/((x-3)(x-2))ですがx→3のとき分子と(x-2)は正なので(x-3)を右側極限と左側極限で場合分けが必要だと思います。 x→3+0のときx-3→+0だから(4)→+∞、x→3-0のときx-3→-0だから(4)→-∞です。 >・こういう問題ではどういう決まりがあるのですか?(∞-∞や∞/∞に収束するような形はだめ.など) 極限が∞ー∞、∞/∞、0×∞、0/0という形になるときは不定形といってこのままでは極限値を定めることが出来ないので式変形が必要になってきます。 極限の問題の本質は不定形を解消することにあります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます. おなじ0に収束するのでも,+と-を気にする必要があるのですね. 不定形をなくしていくことが重要なのですね.今までこれが分かりませんでした. とてもスッキリしました. これからもよろしくお願いします.

関連するQ&A

  • 極限値を求める問題です。

    極限値を求める問題です。 画像のような計算の解き方がわかりません。 いうまでもなく極限値を求めろというものです。 分子か分母を有理化して答えを出すのかと試してみましたが どちらにせよ分母か分子が0となって答えが違い 計算が行き詰まってしまいます どのような解き方がありますでしょうか 一番簡単な解答をお願いします ちなみにこの極限値は有限な値(3)となり収束するそうです。

  • 極限値

    (1) lim[n→∞]√(x+3)-√(x)/√(x+2)-√(x+1) 分子有理化をして、 分子分母に√(x+3)-√(x)をかけて、 lim[n→∞] 3 /{√(x+2)-√(x+1)}{√(x+3)-√(x)} さらに分子分母をxで割りました。 3/∞になって0になります。 しかし、解答は3です。 (2) 数列{a_n}の極限値を求める。 a_n=1^2+2^2+…+n^2/n^3 こちらは全く分かりません。 分子分母をn^2で割りましたが、 なにも進みません…。 なにかヒントをお願いします。

  • 微分の極限値(注:初心者)

    高校数学の本で微分の極限値の説明で、 lim(x→1) x^2 - 1/x-1=(x+1)(x-1)/x-1=lim(x→1) x+1=2 という式が書いてるのですが、これは結局 f(x)=x+1 という1次関数のlim(x→1)の場合のf(x)の極限値の事ですが、なぜ最初わざわざ分数で表して約分でx+1に変形してからxに1を代入するような説明なんでしょうか?最初の分数の状態でxに1を代入すれば分母も分子も0になり、そこで式が終わってしまうという事が言いたいだけなんでしょうか?なぜこういう説明があるのかが理解できません。微分係数のf'(x)=f(x+h)-f(x)/h の式でhにいきなり0を代入したらそこで式が終わってしまうという事を説明するためなのでしょうか?この文の必要性がいまいち分かりません。わかりにくい質問かもしれませんが引っかかるので、質問の真意がわかる人お願いします。ようするに、なぜ最初 x^2 - 1/x-1=(x+1)(x-1)/x-1 という分数で表してその後約分で x+1 の形に持ってくるような書き方なのかが知りたいんです。

  • 無限数列の極限値

    lim{2^(2n-1)}/{(3^n)-1} n→∞ この極限値を求める問題で 分母分子を3^nで割ったところ 分母は1に収束だと分かったんですが 分子がどうなるかわからないのでおしえてください。 おねがいします。

  • 極限値を求める問題

    極限値の問題です。ロピタルの定理を使うというのですが、ロピタルの定理を使うところまで式を変形できません。わかる方いましたら、式を変形してください。よろしくお願いします。 lim[x→0]((a^x+b^x)/2)^(1/x)

  • 極限値に関して!!

    分数関数の極限値に関して、分母の極限値が「0」ではなく、分子の極限値が「0」という場合もありますよね???

  • 極限

    たびたびすいません。もう1つ聞きたいことがあります 注(ax+bは√の中には入ってません) lim{√(2x^2-3x+4)-(ax+b)}=0 x→∞ となるような定数a、bの値で √(2x^2-3x+4) x√{(2-(3/x)+(4/x^2)}と変形できたので、収束するためにはa>0が1つの条件になるのですが、 分子を有利化すると、 {(2x^2-3x+4)-(ax+b)^2} ---------------------- {√(2x^2-3x+4)+(ax+b)} となるんですが、ここでひとつ疑問に思いまして、 a>0の範囲だと、分母は0に収束できず、分子は-ax^2-2axより、a>0で0に収束する条件を満たします 分子と分母がそれぞれ0に収束するとき極限値を持つと習ったのですが、よく分かりません。お願いいたします

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

  • 極限値の求め方について

    極限値を求める問題で、つまずいたところがあります。 lim x→-∞ (3x+2)/(x^2+1)^1/2 という問題なので、当初は分子と分母をxで割ることで lim x→-∞ (3+2/x)/(1+1/x^2)^1/2に変形し、答えを3と導出したのですが正答は-3とのことです。 x=-tとおき、lim t→∞ (-3t+2)/(t^2+1)^1/2とすれば-3が導出できることはわかったのですが 当初のやり方のどこに不具合があったかわかりません。 分母の(x^2+1)^1/2を、負の値であるxで割ろうとする事が問題なのでしょうか? 自分なりに理由を探索したのですが、いまいち確証が持てません。ご回答お願いします。