• ベストアンサー

d^2φ(r)/dr^2 + 1/r・dφ(r)/dr = 0 を積分

d^2φ(r)/dr^2 + 1/r・dφ(r)/dr = 0 を積分せよという問題なんですが・・・ 1/r・d/dr {r・dφ(r)/dr} = 0 と言う風に変型して、 部分積分の公式(∫f(x)g'(x)dx=f(x)g(x)-∫f'(x)g(x)dx)を使って計算したんですがどうにも答えが出ません。 これ以上解き方が全く思い浮かばないので ヒント等あればぜひ教えていただきたいです。 よろしくおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

それでいいんじゃないですか? そのまま計算を進めて… (1/r)(d/dr){ r・dφ/dr } = 0   ↓ (d/dr){ r・dφ/dr } = 0   ↓ r・dφ/dr = A  (A は定数)   ↓ dφ/dr = A/r   ↓ φ = A(log r) + B  (B は定数) …と、もって行けますよね。 初期条件から A, B を定めて終わり。

gluhen
質問者

お礼

あ、本当ですね>< 思いっきり勘違いしてそれを思い込んだまま計算して悶絶してました>< おかげでスッキリできました。 回答ありがとうございましたm(__)m

関連するQ&A

  • 積分計算

    この積分計算をできるだけ分かりやすく丁寧に教えて下さい、よろしくお願いします。 f(r)=1/(√(2π)σ)*exp(-r^2/(2σ^2)) としたときのIを求めなさい。 I=∫[0→x] ∫[0→2π] r*f(r)dθdr+∫[x→R] ∫[cos^-1(x/r)→2π-cos^-1(x/r)] r*f(r)dθdr

  • 次の積分は発散するかどうか

    次の積分は発散しますか? 積分問題:   ∫[0~∞]exp(-x^2/4){∫[0~x]exp(r^2/4)dr}dx exp(-x^2/4)と∫[0~x]exp(r^2/4)dr との積をxについて0から∞まで積分すると発散するかどうかということです。 exp(-x^2/4){∫[0~x]exp(r^2/4)dr}についてはxを∞にとばすとこれは0に収束することが示すことができました。0に収束するのでこの問題となっている積分がもしかしたら収束するかもしれないし発散するかもしれないしというところです。

  • 微小量の2乗の積分方法は?

    お世話になります。 円の面積を求める方法の1つに、円を2次元の極座標系で考えて ∫ ∫ r dr dθ・・・(1) で計算する方法があると思います。 この場合、積分する微小領域の形を rdθ × dr の長方形とみなしていると思います。 しかし微小領域は厳密には長方形ではなく、大きな扇形から小さな扇形を引いたような形だと思います。これをきちんと計算すると、微小領域の面積は (大きな扇形の面積) - (小さな扇形の面積) = (π(r+dr)^2 - πr^2) dθ / (2π) = (r dr dθ) + (dr^2 dθ / (2π)) となります。 これを r と θ で積分すると、第 1 項は (1) と同じなので、第 2 項 が積分するとゼロになるということだと思いますが、dr^2 の積分ってどうやればいいのでしょうか? よろしくお願いします。

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

  • 定積分の問題

    ∫(0から2){x/(3-x)^2}dxの定積分を求めよ。という問題なんですが、友達にヒントをもらい、部分積分法を使って解いてみました。 ∫(0から2){x(3-x)^-2}dx =[x(3-x)^-2](0から2)-∫(0から2){(3-x)^-2}dx =・・・ と計算していって答えは2-log3になったのですが、どこか物足りないような気がします。こんな単純な計算でいいのでしょうか? 部分積分法なら、最初に何を微分したものかを考えると思うのですが、友達に聞いたところ、これで合ってると言われました。 もしこのやり方が間違っていたら、解法を詳しく教えてください。お願いします。

  • 3次の定積分の問題です。

    (1) ∫(x-α)(x-β)g(x) dxの定積分(区間:-1→1)が0となるときのα、βを求めよ。    ただし、g(x)は1次関数である。 (2) ∫f(x) dx = f(α)+f(β) (積分区間:-1→1)を証明せよ。    f(x)は3次関数である。 という問題です。 (1)はg(x)=ax+bとおいて計算してみたのですが、  a≠0よりα+β=0  b≠0のときα=1/√(3)、β=-1/√(3)      またはα=-1/√(3)、β=1/√(3) というスッキリしない回答になってしまいました。 また、(2)を見据えた答えにならずよくわかりません。 途中計算も含めて御解答していただけると助かります。 よろしくお願いします。  

  • eの入った不定積分

    ∫g'(x)f'(g(x))dx=f(g(x))という公式を使って、 ∫e^2xdxを求めよ、という問題なのですが、どういうふうに計算すればいいのかわからないので、教えてください。

  • 合成関数の積分

    こんにちは。積分法に関する質問です。 gが(a,b)において連続[a,b]において微分可能とし、g´(x)>0で、fもgの値域においては連続とするとき ∫f(g(x))g´(x)dx(積分範囲はaからb)=∫f(y)dy(積分範囲はg(a)からg(b))が成り立つことを示し、(Fоg)´(x)を計算せよという問題です。((Fоg)は合成関数) 今ヒントが与えられていて g(a)≦y≦g(b)において F(y)= ∫f(t)dt(積分範囲はg(a)からy)と置く。とあるのですが、このヒントをどう使うのかが分かりません。 それと(Fоg)´(x)の計算もお手上げです。 どなたかヒントよろしくお願いします。

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • この積分の求め方を教えて下さい。お願いします。

    こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。