3次元凸多面体の平面グラフと面の形状について

このQ&Aのポイント
  • 3次元凸多面体の頂点と辺をグラフとみなしたとき、平面的であることを証明する方法がわかりません。
  • 3次元凸多面体は必ず三角形、四角形あるいは五角形の面を持つことを証明しました。
  • 具体的な証明は正多面体の場合にはできましたが、一般の場合についてはわかりません。
回答を見る
  • ベストアンサー

3次元凸多面体

3次元凸多面体 3次元凸多面体の頂点と辺をグラフとみなしたとき、これが平面的であることを示せ。 また、3次元凸多面体は必ず三角形、四角形あるいは五角形の面を持つことを示せ。 前半は証明の糸口さえ掴めませんでした。ただ、イメージとしては、例えば立方体はある一面から見ると下図のように平面グラフに出来ますよね? これを一般的な3次元凸多面体について、言葉として証明することができません。 後半では、正多面体については証明出来たつもりです。以下、その証明です。 [証明] (前半が証明済みと仮定して)3次元凸多面体の頂点と辺をグラフとみなし、これの平面グラフGを考える。 Gの頂点数をn、辺数をe、面数をf、各頂点の次数をd、各面がk本の辺を境界に持っているとする。 k=3または4または5であることを示せばよい。 次数の総和=辺数*2 ⇔nd=2e …(1) また、 kf=2e …(2) オイラーの公式より、 2=n-e+f =2e/d - e +2e/k (∵(1)(2)) ⇔1/d + 1/k = 1/2 + 1/m …(3) 式(3)より、明らかにmin(d,k)=3である。 d=3のとき、1/k - 1/6 = 1/m >0よりk=3,4,5 このように証明しましたが、一般の場合にはどうしたらいいでしょうか。どなたか教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

平面的であるというのは、多面体の1つの面をむりやり大きく広げて平面に貼り付けると考えればいいのですが、これでは証明にはなっていないのかな? 後半は、背理法で証明できます。 頂点数をn、辺数をe、面数をfとすれば、 2=n-e+f 各頂点に1~nの番号を付けて、各頂点に集まる線の数をd(i) (i=1,2,・・・n)、 各面に1~fの番号を付けて、各面を構成する線の数をk(j) (j=1,2,・・・f)とすると、 Σ[i=1・・・n]d(i)=Σ[j=1・・・f]k(j)=2e 各頂点に集まる線の数は3以上であるから、 Σ[i=1・・・n]d(i)≧3n より、2e≧3n もし、凸多面体の各面がすべて6角形以上だとすると、各面の内角の和は720度以上である。 720f=720(2-n+e)≧360(4-2n+3n)=360(n+4) より、各面の内角の総和は360(n+4)度以上でなければならない。 一方、m角形の内角の和は180(m-2)なので、各面の内角の総和は、 Σ[j=1・・・f]180(k(j)-2)=180*2e-360f=360(n-2) 360(n-2)<360(n+4) なので、各面の内角の総和が360(n+4)度以上であることと矛盾する。

gangangnb
質問者

お礼

ご回答ありがとうございました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

同じことなんだけど, 前半は「球面-1点」と「平面」が位相同型という定理を使うのが確実ではないかと>#1.

gangangnb
質問者

お礼

ご回答ありがとうございました。

関連するQ&A

  • 凸多面体について

    3次元凸多面体で、任意の二頂点が隣り合ってる多面体は四面体のみですが、 4次元凸多面体で同様の性質を持つものはどれくらいあるのでしょうか?

  • 凸多面体とオイラーの公式の問題です

    凸多面体のうち、すべての面が同じ正多角形からなり、各頂点には同じ数の辺が集まるものを正多面体という。オイラーの公式を考えることにより、正多面体の種類を決定せよ。 この問題がわからないのでよろしければ解説をお願いします。

  • グラフ理論について

    全然分からなくて困っています。誰か助けてください。 1.グラフKn,Kn ̄、Km,n,Cn,Tn〔Tnは位数nの木〕の染色数をそれぞれ求めよ。 2.グラフKn,Km,n,Cn,Tnの辺染色数をそれぞれ求めよ。 3.オイラーの多面体公式を証明せよ。 4.以下の問題を証明せよ。 〔1〕頂点数が3以上の平面グラフGが極大平面グラフであるための必要十分条件は、Gのすべての領域が三角形であることである。 〔2〕4頂点以上の極大平面グラフGにおいて、           △〔G〕   不等式 Σ 〔6-i〕Ni =12 〔Ni = {次数がiの頂点の数}〕が成立する。 〔3〕4頂点以上の平面的グラフには、次数5以下の頂点が存在する。 〔4〕K5,K3,3は非平面的グラフである。 〔5〕平面的グラフは5-彩色可能である。

  • 正三角形による多面体について

    正三角形による多面体について いくつか お聞きします 面が奇数にはなり得ないことの証明は いかに (頂点の数-2) 対 (面の数) 対 (辺の数) が1対2対3になることの証明 (これはオイラーの定理を用いずに証明はできるのでしょうか) 正18面体 凸型は ないことの証明は 簡素にできるレベルのものでは ないのでしょうか 宜しくお願い致します。

  • オイラーの多面体定理の拡張

    例えば大きい立方体の天井の真ん中に 小さい立方体が乗っかって癒合している立体を考えます。 このような図形に対してオイラーの多面体定理を論じる際には、 頂点(v)・辺(e)・面(f)をどのように定義すればよいのでしょうか? 素直に数えると(v, e, f) = (16, 24, 11)となるので、 v - e + f = 3となります。 このような場合を統一的に論じるには 適切にv, e, fを定義した上で 多面体定理を拡張しないといけないと思うのですが、 私は「普通の立体は(頂点) - (辺) + (面) = 2になる」 という以上の知識をもっておりません。 その先はどうなっているのでしょうか。 どなたかご教示いただければ幸いです。

  • オイラーの多面体公式

    オイラーの多面体公式 オイラーの正多面体公式 (頂点の数)+(面の数)-(辺の数)=2 この“2”というのは、どんな意味を表しているのでしょうか。 なぜ“2”になるのか説明しなければなりません。 どなたか参考になるページや詳しい説明がわかれば教えていただきたいです。 よろしくお願いします。

  • 多面体の辺と頂点と面の数の関係

    現在中学3年です。ある教材を見ていたら多面体の辺と頂点と面の数には次のような関係があるって書いてありました。 辺の数=頂点の数+面の数-2 いろいろ考えたのですが、なぜこのようになるのだかわかりません。くだらない質問かもしれませんが、よろしくお願いします。

  • グラフの証明を教えてください

    背理法の証明で 連結で、全ての頂点次数が偶数であり、オイラーツアーを持たないグラフがあるとするときの そのうち最も辺の少ないグラフをGとします Gの中のツアーで中で、最も辺の数が多いものをCとします。 そのときGからCの辺をすべて取り除いたグラフの連結成分Hがあるとしたとき Hの各頂点の次数は偶数である。 この証明を教えてください。

  • 平面グラフは直線だけで描けるか?

    頂点を3つもつ完全グラフK3は、正三角形の各頂点に頂点をおけば、そして、それを直線(線分)で結べば、その線分は正三角形の辺になります 頂点を4つもつ完全グラフK4は、長方形の各頂点に頂点をおけば、そして、それを直線(線分)で結べば、長方形の辺と対角線になります。しかし、対角線は交差してしまうので、どちらか一方を迂回させて(線分でなく)描くことになります。 しかし、正三角形の各頂点とその重心を頂点とすれば、線分の長さは2種類になりますが、K4でも線分で描けます。 頂点を5つもつ完全グラフK5は平面グラフにはなりません。それ以上の完全グラフでも平面グラフにはなりません。 そこで質問です。完全グラフに限らず、どんな平面グラフでも、変形さえすれば、頂点以外で曲がったりカーブしたりすることなく、描くことはできるのでしょうか?

  • グラフ理論

    Gが三角形を持たない単純平面的グラフとすると、Gが4-彩色可能であることを帰納法を用いて証明するんですけど、「m≦2n-4」と「次数3以下の頂点がある」の二つで帰納法のやり方を教えてください。