• ベストアンサー

解の個数

解の個数 2x+3y=97の非負の整数解(x,y)はいくつ存在するか? 式を変形して y=-2/3x+97/3 97がおそらく素数なので、x,yが何の倍数になればなればよいのか分かりません。 (そもそも解のしぼり方も倍数から判定するのかも分かりません) 「グラフの形からx=1,2,3,,,48まで代入して調べる」以外の方法がありましたら教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8013/17127)
回答No.2

#1が言ってるように「順に整数を代入していく」ことをお勧めします。 そのとき,「x=1,2,3,,,48まで代入」よりも「y=1,2,3,...,32まで代入」の方が早いですね。 それだけじゃあ,あれですから少しだけ付け加えると 2x+3y=97 のx,yの係数をみて,とりあえず=1になるような数x,yを見つけます。 2*(-1)+3*1=1 ですね。右辺を合わせるために*97すれば 2*(-97)+3*97=97 となります。辺々引けば 2*(x+97)+3*(y-97)=0 となります。これから 2*(x+97)=3*(97-y) が分かって,係数の2,3は互いに素ですからtを整数として x+97=3t 97-y=2t とあらわされます。これから x=3t-97 y=97-2t が分かりますが,x,yは非負ですからtは 97-2t>0よりt<=48 3t-97>0よりt>=33 の範囲しかとりません。これで個数が分かるでしょう。

solution64
質問者

お礼

その解き方思い出しました!! 答えは16個ですね! ありがとうございました!!

その他の回答 (3)

  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.4

#2 >「y=1,2,3,...,32まで代入」の方が早いですね。 yは奇数であるという条件を入れれば個数は決まってしまいます。

solution64
質問者

お礼

代入するのもそんなに面倒ではなかったです! ありがとうございました!

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.3

y=(97-2x)/3 と変形したほうが分かりやすいでしょう。 97-2xは3の倍数でなければならないので、これを満たす最小のxは2 あとは3づつ増やして、 x=2,5,8,...,47

solution64
質問者

お礼

回答ありがとうございます! 参考になりました!

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

>97がおそらく素数なので、x,yが何の倍数になればなればよいのか分かりません 整数方程式をあまり解いたとこないなら、順に整数を代入していくのが早いでしょう。

solution64
質問者

お礼

回答ありがとうございます!

関連するQ&A

  • 整数解の個数

    不等式 (x/2)+(y/3)+(z/6)=<10 を満たす負でない整数の解の個数を求めよ xについて絞り込みを考えて、0=<x=<20, これで、x=0のとき、x=1のとき、・・・・x=20のとき と考えれば、個数はわかるが、こんな解法なはずはない。 この種の問題の数え方を教えてください。

  • 微分 実数解の個数

    x^3+3x^2=aが異なる3個の実数解をもつとき、定数aの値の範囲を求めよといったような問題で どうすれば解けるのかなどのプロセスは理解できるのですが そもそものf(x)=aの実数解の個数が、y=f(x)のグラフと直線y=aの共有点の個数に等しいというのが分かりません なぜグラフとの共有点の個数=実数解なのか・・・おそらくグラフについての基本的なことが分かってないのだと思うのですが、その基本的なことがなんなのかが分かりません お願いします

  • 複接線と異なる実数解の個数

    一般に3次以下の関数 f(x)とg(x)について f(x)=g(x)の異なる実数解の個数は y=f(x)のグラフと y=g(x)のグラフの共有点の個数になりますが、 4次関数f(x)と1次関数g(x)について y=g(x)のグラフがy=f(x)のグラフの複接線となっている場合 注意しろと先生がおっしゃっていた記憶があります。 f(x)-g(x)=a(x-α)^2(x-β)^2 とあらわせるときに 異なる実数解の個数2個 グラフの共有点2個でなんら問題はないように見えますが何がおかしいのでしょうか 実数解をααββの4個と見るから共有点の個数2個と一致しないのでしょうか。 そもそも僕の記憶違いでしょうか。 お願いします。

  • x^2+4y^2=1 の解について

    x^2+4y^2=1 をみたす共に有理数のx,yがある。解(x,y)は無数にあることを示せ。  x=a/b,y=p/q とおいて、式を変形して、その式が無数の整数解をもつことを示す方針で考えていますが、その無数に解をもつ方程式がどんな形にこの場合なるのか、行き詰まっています。ポイントとなるところについてアドバイス、ヒントがあればと思います。

  • 実数解の個数

    関数f(x)=x^3-27a^2x+16について f(x)が単調に増加するときのaの値、方程式f(x)=0の異なる実数解の個数、f(x)の極大値と極小値、f(x)=0が異なる実数解を2個もつときのaの値 を求めよ。 という問題なんですが、微分した時点で止まってます。 実数解の個数を求めるには、y=f(x)のグラフとx軸の共有点のx座標を求めればいいと思うのですが、何から始めればいいかわかりません。 順をおって説明していただけませんか?お願いします。

  • 3次方程式の異なる解の個数

    -x^3+3x^2-1=0 の異なる実数解の個数を求める問題で、テストで以下の答案を書いたらバツになりました。根本的に間違っているのでしょうか?それとも、答案の書き方がマズかったのでしょうか?? ---------------------------------- -1=x^3-3x^2 と変形する。 f(x)=x^3-3x^2 とおくと、 f'(x)=3x^2-6x 3x^2-6x=0 とおくと、 x=0,2 である。つまり、f(x)はx=0,2で極値をもつ。 f(0)=0 f(2)=-4である。 y=x^3-3x^2 と y=-1が何個の異なる点で交わるかを調べる。 f(2)<-1<f(0) より、3個の異なる点で交わる。 よって異なる実数解の個数は3個。

  • 共有点の個数 実数解の個数

    高校数学です。 3次以下の関数 y=f(x)のグラフと y=g(x)のグラフとの共有点の個数は f(x)=g(x)の異なる実数解の個数と一致しますが f(x)やg(x)が4次以上の関数のときでもこの関係は常に成り立ちますか?

  • 方程式の実数解の個数について

    正整数nに対して、関数u_n(x)を次のように定義する。 u_n(x)=1+x+(1/2!)x^2+(1/3!)x^3+…+(1/n!)x^n (1)n=1, 2, 3, 4に対して、方程式u_n(x)=0の実数解の個数を調べよ。 (2)任意の正整数nに対して、方程式u_n(x)=0の実数解の個数を求めよ。 この問題がわかりません。解答をよろしくお願いします。

  • 場合の数です

    方程式X+y+z=5を満たす負でない整数解の個数は何個ですか。 解き方を教えてください。

  • 実数解の個数を求める式の変形において

    x^3-x^2-kx-(k+4)=0 ここでkは実数の定数とするとき、異なる実数解の個数を求めよ。 とありました。講義で覚えたのがとりあえず左辺=定数 という形に変形してグラフを書いて求めるのが最も簡単である。 と言われたので、とりあえず (x^3-x^2-4)/(x+1)=k という形まで変形してあとは一回微分を行い増減表を書いて求めました。 とりあえず答えはあっていたのですが駄目だと言われたところが、 f(-1)で≠0を示してないよね。 と言われました。 ここが質問です。 当然、今回の式は分数の式なので、何よりも分母ゼロはルール違反だというところまではわかっています。 しかし、だからと言ってなぜ、f(-1)=-4より、f(-1)≠0なので という文言が必要なのかの理解が恥ずかしながらできていません。 単に (x^3-x^2-4)/(x+1)=k で、分母はゼロじゃないからそのまま増減表の記入に移行してはいけないのでしょうか? 多分、そうとう重要なことを理解してないで答えだけあってるという一番よくない解法をしていると存じます。 ご指導よろしくお願い申し上げます。