• 締切済み

位相についての質問です。

(X,dx)(Y,dy)を距離空間とし、f;X→Yを写像とする。fはXの任意の2点x1,x2に対して dx(x1,x2)=dy(f(x1),f(x2))(等長写像) を満たすとし、次の問いに答えよ。 (1)fがX上で連続であることを証明せよ。 (2)fが単射であることを証明せよ (3)fが全射であれば、逆写像f-1が存在してf-1も等長写像であることを示せ    またf-1の連続性も調べよ  という問題です。 (1)はdxのδ近傍がfで送ったdyのε近傍に収まりかつδ=εという証明をしました。 (2)はx1とx2が異なるのでf(x1)もf(x2)も異なるという証明をしました? (3)がわかりません というか、(1)も(2)も証明になっているか不安です。 どなたか教えていただけないでしょうか。 お願いします。

みんなの回答

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

(1) はソレで良さげ、 (2) はダメそうな気配がしています。 (1) 証明すべき命題は、「連続」の定義により、 ∀x1∈X, ∀x2∈X, ∀ε>0, ∃δ>0, dx(x1,x2)<δ ⇒ dy(f(x1),f(x2))<ε です。 これは、所与の ∀x1∈X, ∀x2∈X, dx(x1,x2)=dy(f(x1),f(x2))   …(*) により ∀x1∈X, ∀x2∈X, ∀ε>0, ∃δ>0, dx(x1,x2)<δ ⇒ dx(x1,x2)<ε すなわち ∀x1∈X, ∀x2∈X, ∀ε>0, ∃δ>0, δ≦ε と同値です。 ∀ε>0, ∃δ>0, δ≦ε は、実数の稠密性により成立しています。 証明は「δ≦ε であるような δ をとれば良い」で終わりなのですが、 そのような δ の一例として δ=ε を挙げても、もちろん十分です。 (2) 質問文中のコメントでは、「単射」を言い換えたダケに見えます。 それが成立していることを、証明しないと。 証明すべき命題は、仰るとおり、 ∀x1∈X, ∀x2∈X, x1≠x2 ⇒ f(x1)≠f(x2) ですが、対偶をとって ∀x1∈X, ∀x2∈X, f(x1)=f(x2) ⇒ x1=x2 のほうが見やすいでしょう。 「距離」の定義(の一部)より x1=x2 ⇔ dx(x1,x2)=0 f(x1)=f(x2) ⇔ dy(f(x1),f(x2))=0 ですから、(*) により f(x1)=f(x2) ⇒ dy(f(x1),f(x2))=0 ⇒ dx(x1,x2)=0 ⇒ x1=x2 が成立します。 (3) は、三つの部分に分けます。 (3a) fが全射であれば、逆写像f-1が存在して (3b) f-1も等長写像であることを示せ (3c) またf-1の連続性も調べよ (3a) は、「逆写像」の定義。 (3b) は、式 (*) そのまんま。 (3c) は、形式上、まじめにεδをする必要があるでしょうが、    内容的には、等長写像であることから    (1) 程度のナンチャッテεδになります。

magamitio
質問者

補足

わかりやすい説明ありがとうございます。 助かりました。

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

>(1)も(2)も証明になっているか不安です。 であれば、その証明の全文を補足にどうぞ。

関連するQ&A

  • 位相数学の問題です

    問1。 x∈R^2,r>0に対しR^2の部分集合Ur(x),Ir(x)を Ur(x)={y∈R^2:d2(x,y)<r} Ir(x)={y∈R^2:d∞(x,y)<r} とする。 ここでd2はEuclid距離,d∞はノルムⅠⅠ・ⅠⅠ∞により定義される距離(のn=2の場合)とする。 このときy∈Ir(x)に対しUp(y)⊂Ir(x)となるp>0を具体的に求めろ。 問2 (X,D)を位相空間。△:X→X×X、△(x)=(x,x)を対角線写像とする。このとき、△は位相空間Xから積空間X×Xへの連続写像であることを示せ。 問3 X、Yを位相空間とする。写像f:X→Yに対し、F:X→X×Y、F(x)=(x,f(x))とする。fが連続ならばFはXからの直積空間X×Yへの連続であることを示せ。 問4 X×Yを位相空間(X,Dx)と(Y,Dy)の直積空間とする。Xの任意の点xに対してX×Yの部分空間{x}×Y(={(x,y)∈X×Y:y∈Y})はYと同相であることを示せ。 問5 (X,Dx)、(Y,Dy)を位相空間、(Z,Dz) (Z=X×Y)を直積位相空間、px:Z→X、py:Z→Yを射影とする。次の主張が正しければ証明し、誤りであれば反例をあげろ。 (i)射影pxは開写像である (ii)射影pxは閉写像である

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 情報数学

    「写像f:X→Yに対して、写像g:2^X→2^Yをg(A)=f(A) (A⊂X)と定める。 以下の命題に関して常に成り立つたらば証明を与え、そうでないなら反例をあげよ ・fが単射ならばgは単射である ・gが単射ならばfは単射である ・fが全射ならばgは全射である ・gが全射ならばfは全射である」 という問題がわかりません! 面倒かと思いますが、解説よろしくお願いします

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • 位相空間への全射について

    位相空間への全射について 位相空間と写像について学習している者です。 質問させていただきます。 -- 集合Xから位相空間(Y,μ)への全射fがあるとき、 Т = {(1/f)(U)|U∈μ}とおくとき、ТがX上の位相であることを証明せよ。 ※(1/f)はfの逆関数を示します。 -- これを証明したいのですが、道筋が見えません。。。 ご教授よろしくお願いいたします。

  • 大学数学 全射と単射

    次の問いが正しければ証明し、間違っていれば凡例をあげよ。 (1)fが単射ならばg○fは単射 (2)gが全射ならばg○fは全射 (3)fが単射、gが全射ならばg○fは全単射 という問題についてなのですが、 例えば(1)はgが全射か単射かによって場合分けをして考えるのでしょうか。 g,fともに全射ならばg○fは全射 g,fともに単射ならばg○fは単射 ということは証明できたのですが、g,fの片方が全射でもう片方が単射の場合の証明方法がわかりません。 また「凡例をあげる」というのは、どのように書けば良いのでしょうか?具体的な関数(y=x^2等)を書けということなのですか? ヒントやアドバイスでも良いので、どなたか回答をお願いいたします。

  • ユークリッド平面と連続開写像

    「fをユークリッド平面R2から実数直線R1への写像としてつぎのように定める。R2∋X=<x1,x2>に対して、f(x)=x1 このとき、fはR2からR1への連続開写像であることを証明せよ。」 以下のような流れで証明できて合っていますでしょうか? また、もっと違う方法、簡単な方法はありますでしょうか? 宜しくお願いします。 ------------------------------------------------------- X(x1,x2)とY(y1,y2)の距離d(ユークリッド空間R2の距離)は d(X,Y)=√{(x1-y1)^2+(x2-y2)^2} f(X)とf(Y)の距離d(ユークリッド空間R1の距離)は d(f(X),f(Y))=√(x1-y1)^2 そうだとすると √(x1-y1)^2 <= √{(x1-y1)^2+(x2-y2)^2} だから ∀ε>0,∃δ>0, d(X,Y) < δ=ε ⇒ d(f(X),f(Y)) <= d(X,Y) < ε fは連続である。 fによってR2の開集合はR1の開集合に写像されることは、連続性と同じ理由で明らか。 ∵Xの任意のε(X)近傍はf(X)のε(X)近傍の上に写像されるから、R2の開集合はR1の開集合に写像されることを意味していて、fは開写像である。 ∴fはR2からR1への連続開写像である。 ----------------------------------------------------------------

  • 写像について

    問題 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 単射から全射の証明も、不十分な気がします。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 位相幾何学に関連した証明問題です。

    X,Yを2つの位相空間とする。 写像f:X→Yが全単射で、連続であるとき、fが同相写像となるためには、fが開写像(または閉写像)となることが必要十分である。 これを示せ。 詳しい証明お願いします。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。