• 締切済み
  • すぐに回答を!

二次関数の最大値・最小値

二次関数の最大値・最小値 y=-x²+4x (0≦x≦a) の最大値M(a)、最小値m(a)を求めよ。 ただし、a>0とする。 が分かりません。 どなたか教えてください。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • KI401
  • ベストアンサー率53% (44/82)

# 問題をそのままコピペして投げるのは良くないね。 まず平方完成してみるんだ。 それで軸について場合分けすればいい。 それでもまだ分からなかったら、 どこが分からないのかを補足として具体的にどうぞ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

場合分けするんですね。 今から解いてみようと思います。 ありがとうございました。

関連するQ&A

  • 対数関数の最大・最小

    1≦x≦27のとき、次の関数の最大値と最小値を求めよ。 y=(log₃x)²ーlog₃x⁴-3 で答えが「x=1で最大値-3をとり、x=9で最小値ー7をとる」になりました。 合ってますか? 答えがわかればいいです。 お願いします。

  • 2次関数の最大・最小

    2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください

  • 二次関数の最大と最小

    二次関数の最大と最小 二次関数y=4x^2-2kx+3k-1の最小値をmとするとき、次の問いに答えよ 1)mをkの式で表せ 2)mをkの二次関数とみたとき、mの最大値を求めよ 二次関数y=x^2-2x+k(-1≦x≦2)の最大値が7であるとき、定数kの値を求めよ 詳しく説明お願いします!

  • 2次関数の最大・最小

    問: 次の条件に適するように、定数aの値を求めよ。 (1)関数y=x^2-4x+a (1<=x<=5)の最大値が6である。 (2)関数y=-x^2+3x+a (-3<=x<=1)の最大値が4である。 (3)関数y=-x^2-4x+aの最大値が、関数y=x^2-4xの最小値と一致する。 答: (1)a=1 (2)a=2 (3)a=-8 解説して下さい!

  • 二次関数の最大・最小

    関数y=x²-2x-1(0≦x≦a)のとき (1)a=2 (2)2<a の最大値および最小値をおしえてください!

  • 数学Iの2次関数の最大。最小

    二次関数 y=-x2+4ax+4a(1) このときの最大値mをaであらわせ また、aの関数mの最小値と、その時のaの値を求めよ というような問題で (1)の式を変形すると y=-(x-2a)2+4a2+4a と、ここまではわかるのですが yはx=2aで最大値4a2+4aをとる。 ここで、質問なんですが なんでx=2aで最大値4a2+4aなんでしょうか 最大値じゃなくて最小値じゃダメなんでしょうか? 初歩的な質問ですいません; よければ早目な回答よろしくおねがいします ちなみにこの問題の答えは m=4a2+4a これを変形して m=4(a+1/2)2-1 したがって mはa=-1/2 最小値-1をとる です。

  • 二次関数の最大・最小

    二次関数の最大・最小 全然分かりません!! 教えてください!! 関数y=-x?+ax-2aの最大値が5である 定数aの値を求めよ お願いします!!!!

  • 二次関数の最大と最小

    今晩は 参考書の説明ではよく分からないので教えてください。 ---------------------------------------------------------------------- 例題: 二次関数y=x^2-2x+2のa≦x≦a+2に於ける最大値を求めよ ---------------------------------------------------------------------- 解説: 下に凸型のグラフでの最大値を求める問題で、区間の両端が決め手となる。 関数をy=f(x)とおくと、f(a)=f(a+2)を満たすaの値が、場合分けの境界値になる y=x^2-2x+2=(x-1)^2+1 xの変域a≦x≦a+2の幅は2で一定 f(x)=x^2-2x+2とおくと f(a)=a^2-2a+2 f(a+2)=a^2+2a+2 f(a)=f(a+2)とすると、a=0 よって、 a<0のとき x=aで最大値a^2-2a+2をとる 0≦aのとき x=a+2で最大値a^2+2a+2をとる ---------------------------------------------------------------------- このようにありました。 ですが、f(a)=f(a+2)とする意味が全然分かりません。 xの範囲の最大値の時の関数と最小値の時の関数、つまり区間の両端を等式で 結ぶことがどうして答えに繋がるのか見当が付きません。 何故区間内の最大値/最小値を求めるときに、区間の最小値の時の関数と最大 値の時の関数を等しくするのですか? 宜敷御願い致します

  • 二次関数の最大・最小

    二次関数f(x)=2x~2-8x+7のa≦x≦a+2における最大値をM(a)、 最小値をm(a)とするとき、M(a)とm(a)をaの式で表せ。 (答え) M(a)=2a~2-8x+7(a<1) 1(a=1) 2a~2-1(a>1) m(a)=2a~2-1(a<0) -1(0≦a<2)   2a~2-8a+7(a≧2) 今考えると全くやり方がわかりません。 分かるのは二次関数f(x)=2x~2-8x+7を標準形にすることだけです。 やり方もわからないのですが、特に分からないのが最小値と最大値の定義域が違うことです。 回答よろしくお願いします。

  • 二次関数の最大、最小の問題教えてください((+_+))

    二次関数の最大、最小の問題教えてください((+_+)) (1)Y=x^2+2axの最小値が-9であるように定数aの値を求めよ。またこのとき最小値を与えるxの値を求めよ 二次関数の決定の問題です (2)x=-2のとき最大値5をとりx=-1のときY=0となる (3)x=3のとき最小値をとり2点(0,5)、(5,0)を通る二次関数を求めよ (4)放物線Y=2x^2-8x+9の頂点と同じであり点(0,5)を通る二次関数を求めよ (5)二次関数のぐらふがx軸と2点(-2,0)、(1,0)で交わり点(0,-4)を通る時その関数をもとめよ この問題わからないのでわかるかた求め方も一緒に教えてください