• ベストアンサー

数学Bの数学的帰納法

の問題なんですけど 1+2+3+・・・+n=1/2n(n+1) の問題なんですケド、 証明 この等式をaとする。 n=kのときaが成り立つ、つまり 1+2+3+・・・+k=1/2k(k+1) であると仮定すると、n=k+1のときのaの左辺は 1+2+3+・・・+k=1/2k(k+1) =1/2k(k+1)+(k+1) =1/2(k+1)(k+2) ↑この 1/2k(k+1)+(k+1)がなぜ 1/2(k+1)(k+2)なるのかわかりません。 教えてください。お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

●タイプの仕方の注意 >>1+2+3+・・・+n=1/2n(n+1) 1/2n(n+1)と書くと 1÷{2n(n+1)}ともとれるので、 (1/2)n(n+1)とか(1/2)・n・(n+1)、n(n+1)/2 とタイプしなければ誤解されますよ。 ●ポイント >>n=k+1のときのaの左辺は >>※1+2+3+・・・+k+(k+1)                     ↑これが抜けています。    右辺も『=1/2k(k+1)』だけでは間違いになります。 ※のあとの本来の答え方を書きます。 n=k+1のときのaの左辺は 1+2+3+・・・+k+(k+1)                ↑ ={1+2+3+・・・+k}+(k+1)                    ↑ 1+2+3+・・・+k=(1/2)k(k+1)だったから、これを使うと、(※※) 上式=(1/2)k(k+1)+(k+1)    =(1/2){k(k+1)+2(k+1)}    =(1/2)(k+1){k+2}    =(1/2)(k+1){(k+1)+1}・・・・※※    =(1/2)n{n+1}・・・・・・・・・・・・・・※※ よってn=k+1のときにも 1+2+3+・・・+n=1/2n(n+1) が成立つ。 (※※は省略しても意味は通じるかな・・・) n=kとして(関係式)が成立つ⇒n=k+1のときも同じ(関係式)が成立つ。 というのが言いたいことですから、最初に何を言うのかを明確にして下さい。

その他の回答 (2)

  • coddo
  • ベストアンサー率0% (0/1)
回答No.2

(k+1)でまずくくって、その後通分すればできます。

  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.1

1/2k(k+1)+(k+1) =(k+1){(1/2k)+1} =(k+1){(1/2)*k+(1/2)*2} =1/2(k+1)(k+2) です、お分かりになりましたか?

関連するQ&A

  • 数B 数学的帰納法 

    nは自然数とする。数学的帰納法を用いて、次の等式を証明せよ。 1+4+7+・・・・+(3n-2)=1/2n(3n-1)・・・・A という問題でn=kのときAが成り立つと仮定すると   1+4+7+・・・・+(3k-2)=1/2k(3k-1)である。この式に3(k+1)-2を加えると...とありますが、3(k+1)-2はどのようにして出すのかわからないので教えてください。宜しくお願いします。

  • 数学的帰納法

    2+4+6+・・・+2n=n(n+1) を数学的帰納法によって証明せよってもんだいなんですが 与えられた等式を(1)とする ((1))n=1の時右辺=2、左辺=2であるから(1)は成り立つ ((2))n=kの時(1)が成り立つと仮定すれば 2+4+6+・・・+2k=k(k+1) この両辺に2(k+1)を加えると 2+4+6+・・・+2k+2(k+1)=k(k+1)+2(k+1) と、こんな感じで解いたんですがあっているのでしょうか?それともまだこっから発展させたりするんでしょうか?間違ってたら訂正をお願い致します。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • 数学的帰納法について

    1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると  とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 数学B 数学的帰納法

    nは自然数とする。数学的帰納法によって、次の等式を証明せよ。 1+10+10^2+・・・+10^n=(1/9){(10^n+1)-1} という問題で、 n=1の時 左辺=1+10=11 となるのはなぜでしょうか? n=1の時は1だと思うんですが…

  • 数学的帰納法

    問い nが自然数のとき、次の等式が成り立つことを、数学的帰納法で証明せよ。 1^3+2^3+3^3+4^3+・・・n^3=(1/4)n^2(n+1)^2 n=1のときが 左辺=1^3=1  右辺=1/4*1*2^2で n=k or n=k+1のときは 左辺=(k+1)k^3 右辺=(1/4)k^3(k)(k+1)^2 これじゃ回答にならんですよね。 n=k or n=k+1のときを証明する時になにを加えればよいかわかりません。 ヒントだけでも教えてください。

  • 数学的帰納法

    nが自然数のとき、次の等式(*)を数学的帰納法を用いて証明せよ。 2+4+6+…+2n=n(n+1)・・・(*) 今日、数学的帰納法を勉強すていて自分で回答をつくったのですが、これでいいのか見てもらえませんか? 2+4+6+…+2n=n(n+1) (1)n=1のとき、左辺2、右辺2、よって成り立つ (2)n=kのとき 2+4+6+…2k=k(k+1)・・・1 が成り立つと仮定すると n=k+1 2+4+6+…2k+2(k+1)=(k+1)(k+2)・・・2 が成り立つことを証明する 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1)・・・3 2と3の右辺が一致するので、(*)は成り立つ (1)(2)より、すべてな自然数は成り立つ ・・・3のところを 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1) =(k+1)(k+2) =kの2乗+3k+2 よって成り立つ こうしてもよいのでしょうか 自分でつくったためあっているかわかりません 教えてください。

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!